Featured Posts

Below is the worksheet with the whole material presented yesterday in the webinar, “Applying the power of computer algebra to theoretical physics”, broadcasted by the “Institute of Physics” (IOP, England). The material was very well received, rated 4.5 out of 5 (around 30 voters among the more than 300 attendants), and generated a lot of feedback. The webinar was recorded so that it is possible to watch it (for free, of course, click the link above, it will ask you for registration, though, that’s how IOP works).

Anyway, you can reproduce the presentation with the worksheet below (mw file linked at the end, or the corresponding pdf also linked with all the input lines executed). As usual, to reproduce the input/output you need to have installed the latest version of Physics, available in the Maplesoft R&D Physics webpage.

Why computer algebra?




... and why computer algebra?

We can concentrate more on the ideas instead of on the algebraic manipulations


We can extend results with ease


We can explore the mathematics surrounding a problem


We can share results in a reproducible way


Representation issues that were preventing the use of computer algebra in Physics



Notation and related mathematical methods that were missing:

coordinate free representations for vectors and vectorial differential operators,

covariant tensors distinguished from contravariant tensors,

functional differentiation, relativity differential operators and sum rule for tensor contracted (repeated) indices

Bras, Kets, projectors and all related to Dirac's notation in Quantum Mechanics


Inert representations of operations, mathematical functions, and related typesetting were missing:


inert versus active representations for mathematical operations

ability to move from inert to active representations of computations and viceversa as necessary

hand-like style for entering computations and textbook-like notation for displaying results


Key elements of the computational domain of theoretical physics were missing:


ability to handle products and derivatives involving commutative, anticommutative and noncommutative variables and functions

ability to perform computations taking into account custom-defined algebra rules of different kinds

(commutator, anticommutator and bracket rules, etc.)





The Maple computer algebra environment


Classical Mechanics


Inertia tensor for a triatomic molecule


Classical Field Theory


*The field equations for the lambda*Phi^4 model


*Maxwell equations departing from the 4-dimensional Action for Electrodynamics


*The Gross-Pitaevskii field equations for a quantum system of identical particles


Quantum mechanics


*The quantum operator components of  `#mover(mi("L",mathcolor = "olive"),mo("→",fontstyle = "italic"))` satisfy "[L[j],L[k]][-]=i `ε`[j,k,m] L[m]"


Quantization of the energy of a particle in a magnetic field


Unitary Operators in Quantum Mechanics


*Eigenvalues of an unitary operator and exponential of Hermitian operators


Properties of unitary operators



Consider two set of kets " | a[n] >" and "| b[n] >", each of them constituting a complete orthonormal basis of the same space.

One can always build an unitary operator U that maps one basis to the other, i.e.: "| b[n] >=U | a[n] >"

*Verify that "U=(&sum;) | b[k] >< a[k] |" implies on  "| b[n] >=U | a[n] >"


*Show that "U=(&sum;) | b[k] > < a[k] | "is unitary


*Show that the matrix elements of U in the "| a[n] >" and  "| b[n] >" basis are equal


Show that A and `&Ascr;` = U*A*`#msup(mi("U"),mo("&dagger;"))`have the same spectrum



Schrödinger equation and unitary transform



Consider a ket "| psi[t] > " that solves the time-dependant Schrödinger equation:


"i `&hbar;` (&PartialD;)/(&PartialD;t) | psi[t] >=H(t) | psi[t] >"

and consider

"| phi[t] > =U(t) | psi[t] >",


where U(t) is a unitary operator.


Does "| phi[t] >" evolves according a Schrödinger equation

 "i*`&hbar;` (&PartialD;)/(&PartialD;t) | phi[t] >=`&Hscr;`(t) | phi[t] >"

and if yes, which is the expression of `&Hscr;`(t)?




Translation operators using Dirac notation


In this section, we focus on the operator T[a] = exp((-I*a*P)*(1/`&hbar;`))



The Action (translation) of the operator T[a]"=(e)^(-i (a P)/(`&hbar;`))" on a ket


Action of T[a] on an operatorV(X)


General Relativity


*Exact Solutions to Einstein's Equations  Lambda*g[mu, nu]+G[mu, nu] = 8*Pi*T[mu, nu]


*"Physical Review D" 87, 044053 (2013)


Given the spacetime metric,

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -exp(lambda(r)), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -r^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -r^2*sin(theta)^2, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = exp(nu(r))}))

a) Compute the Ricci and Weyl scalars


b) Compute the trace of


"Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"


where `&equiv;`(Phi, Phi(r)) is some function of the radial coordinate, R[alpha, `~beta`] is the Ricci tensor, `&Dscr;`[alpha] is the covariant derivative operator and T[alpha, `~beta`] is the stress-energy tensor


T[alpha, beta] = (Matrix(4, 4, {(1, 1) = 8*exp(lambda(r))*Pi, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 8*r^2*Pi, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 8*r^2*sin(theta)^2*Pi, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 8*exp(nu(r))*Pi*epsilon}))

c) Compute the components of "W[alpha]^(beta)"" &equiv;"the traceless part of  "Z[alpha]^(beta)" of item b)


d) Compute an exact solution to the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)" obtained in c)


Background: paper from February/2013, "Withholding Potentials, Absence of Ghosts and Relationship between Minimal Dilatonic Gravity and f(R) Theories", by P. Fiziev.


a) The Ricci and Weyl scalars


b) The trace of "  Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"


b) The components of "W[alpha]^(beta)"" &equiv;"the traceless part of " Z[alpha]^(beta)"


c) An exact solution for the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)"


*The Equivalence problem between two metrics



From the "What is new in Physics in Maple 2016" page:


In the Maple PDEtools package, you have the mathematical tools - including a complete symmetry approach - to work with the underlying [Einstein’s] partial differential equations. [By combining that functionality with the one in the Physics and Physics:-Tetrads package] you can also formulate and, depending on the metrics also resolve, the equivalence problem; that is: to answer whether or not, given two metrics, they can be obtained from each other by a transformation of coordinates, as well as compute the transformation.

Example from: A. Karlhede, "A Review of the Geometrical Equivalence of Metrics in General Relativity", General Relativity and Gravitation, Vol. 12, No. 9, 1980


*Equivalence for Schwarzschild metric (spherical and Krustal coordinates)


Tetrads and Weyl scalars in canonical form



Generally speaking a canonical form is obtained using transformations that leave invariant the tetrad metric in a tetrad system of references, so that theWeyl scalars are fixed as much as possible (conventionally, either equal to 0 or to 1).


Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics.

The implementation is as in "General Relativity, an Einstein century survey", edited by S.W. Hawking (Cambridge) and W. Israel (U. Alberta, Canada), specifically Chapter 7 written by S. Chandrasekhar, page 388:








Residual invariance

Petrov type I







Petrov type II







Petrov type III







Petrov type D






`&Psi;__2`  remains invariant under rotations of Class III

Petrov type N






`&Psi;__4` remains invariant under rotations of Class II



The transformations (rotations of the tetrad system of references) used are of Class I, II and III as defined in Chandrasekar's chapter - equations (7.79) in page 384, (7.83) and (7.84) in page 385. Transformations of Class I can be performed with the command Physics:-Tetrads:-TransformTetrad using the optional argument nullrotationwithfixedl_, of Class II using nullrotationwithfixedn_ and of Class III by calling TransformTetrad(spatialrotationsm_mb_plan, boostsn_l_plane), so with the two optional arguments simultaneously.


The determination of appropriate transformation parameters to be used in these rotations, as well as the sequence of transformations happens all automatically by using the optional argument, canonicalform of TransformTetrad .


restart; with(Physics); with(Tetrads)

`Setting lowercaselatin letters to represent tetrad indices `


0, "%1 is not a command in the %2 package", Tetrads, Physics


0, "%1 is not a command in the %2 package", Tetrads, Physics


[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SimplifyTetrad, TransformTetrad, e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]


Petrov type I


Petrov type II


Petrov type III


Petrov type N


Petrov type D




Physics_2016_IOP_webinar.mw      Physics_2016_IOP_webinar.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

This is the second of three blog posts about working with data sets in Maple.

In my previous post, I discussed how to use Maple to access a large number of data sets from Quandl, an online data aggregator. In this post, I’ll focus on exploring built-in data sets in Maple.

Data is being generated at an ever increasing rate. New data is generated every minute, adding to an expanding network of online information. Navigating through this information can be daunting. Simply preparing a tabular data set that collects information from several sources is often a difficult and time consuming effort. For example, even though the example in my previous post only required a couple of lines of Maple code to merge 540 different data sets from various sources, the effort to manually search for and select sources for data took significantly more time.

In an attempt to make the process of finding data easier, Maple’s built-in country data set collects information on country-specific variables including financial and economic data, as well as information on country codes, population, area, and more.

The built-in database for Country data can be accessed programmatically by creating a new DataSets Reference:

CountryData := DataSets:-Reference( "builtin", "country" );

This returns a Reference object, which can be further interrogated. There are several commands that are applicable to a DataSets Reference, including the following exports for the Reference object:

exports( CountryData, static );

The list of available countries in this data set is given using the following:

GetElementNames( CountryData );

The available data for each of these countries can be found using:

GetHeaders( CountryData );

There are many different data sets available for country data, 126 different variables to be exact. Similar to Maple’s DataFrame, the columns of information in the built-in data set can be accessed used the labelled name.

For example, the three-letter country codes for each country can be returned using:

CountryData[.., "3 Letter Country Code"];

The three-letter country code for Denmark is:

CountryData["Denmark", "3 Letter Country Code"];

Built-in data can also be queried in a similar manner to DataFrames. For example, to return the countries with a population density less than 3%:

pop_density := CountryData[ .., "Population Density" ]:
pop_density[ `Population Density` < 3 ];

At this time, Maple’s built-in country data collection contains 126 data sets for 185 countries. When I built the example from my first post, I knew exactly the data sets that I wanted to use and I built a script to collect these into a larger data container. Attempting a similar task using Maple’s built-in data left me with the difficult decision of choosing which data sets to use in my next example.

So rather than choose between these available options, I built a user interface that lets you quickly browse through all of Maple’s collection of built-in data.

Using a couple of tricks that I found in the pages for Programmatic Content Generation, I built the interface pictured above. (I’ll give more details on the method that I used to construct the interface in my next post.)

This interface allows you to select from a list of countries, and visualize up to three variables of the country data with a BubblePlot. Using the preassigned defaults, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product. The BubblePlot visualization also adds a third dimension of information by adjusting the bubble size according to the relative population compared with the other selected countries.

Now you may notice that the list of available data sets is longer than the list of available options in each of the selection boxes. In order to be able to generate BubblePlot animations, I made an arbitrary choice to filter out any of the built-in data sets that were not of type TimeSeries. This is something that could easily be changed in the code. The choice of a BubblePlot could also be updated to be any other type of Statistical visualization with some additional modifications.

You can download a copy of this application here: VisualizingCountryDataSets.mw

You can also interact with it via the MapleCloud: http://maplecloud.maplesoft.com/application.jsp?appId=5743882790764544

I’ll be following up this post with an in-depth post on how I authored the country selector interface using programmatic content generation.

MaplePrimes Questions Recent Unanswered Maple MapleSim Maple T.A.