The*MRB*constant = sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity) and sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity) = sum((-1)^n*(n^(1/n)-1), n = 2 .. infinity)

But what can we say about

 (∏)(-1)^(n)*(n^(1/(n))-1)?

``

``

Maple does not evaluate it:

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. infinity))

product: Cannot show that (-1)^n*(n^(1/n)-1) has no zeros on [2,infinity] product((-1)^n*(n^(1/n)-1), n = 2 .. infinity)

(1)

And perhaps it should not because of the alternating sign;

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^2))

-0.3908773173e-101

(2)

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^3))

-0.7676360791e-1799

(3)

evalf(product((-1)^n*(n^(1/n)-1), n = 2 .. 10^3+1))

0.5316437097e-1801

(4)

``

 

Download 3232012.mw

marvinrayburns.com


Please Wait...