:

## Accessing MAGMA from Maple

Maple
Similarly to searching of digits of π, Maple can access other Internet resources. In particular, here is an example of accessing MAGMA through William Stein's online SAGE/MAGMA/PARI calculator,
```Magma:=proc(x)
local s,a,b;
uses StringTools, Sockets;
s:=Open("modular.ucsd.edu",80);
Write(s,cat("GET /cgi-bin/calc/calc.py?with=MAGMA&input=",
map((c->cat("%",c))@convert,convert(Squeeze(x),bytes),hex)[],
" HTTP/1.0\n\n"));
a := "";
while b <> false do
a := cat(a,b);
end do;
Close(s);
a[Search("--",a)..Search("Total",a)-1]
end:```
For example (taken from recent Dave Rusin posting in sci.math.symbolic),
```Magma("Q:=GaloisField(35098201); P<x,y>:=PolynomialRing(Q,2);
I:=ideal<P| y + (1+x^5+x^10), x^34 +1 >; Groebner(I); I;");

"-------------------------------------

Ideal of Polynomial ring of rank 2 over GF(35098201)
Lexicographical Order
Variables: x, y
Dimension 0
Groebner basis:
[
x + 33784728*y^33 + 15744019*y^32 + 14466235*y^31 + 14\
937582*y^30 +
9988153*y^29 + 24849537*y^28 + 13827463*y^27 + 108\
51940*y^26 +
25333828*y^25 + 29238403*y^24 + 35087366*y^23 + 31\
85785*y^22 +
12125255*y^21 + 11305600*y^20 + 713800*y^19 + 1188\
2241*y^18 +
23388419*y^17 + 12677392*y^16 + 20159861*y^15 + 31\
143912*y^14 +
33062327*y^13 + 11580434*y^12 + 10629964*y^11 + 14\
094725*y^10 +
30606411*y^9 + 20913610*y^8 + 23355486*y^7 + 32139\
384*y^6 + 35026862*y^5
+ 11038274*y^4 + 26690476*y^3 + 752845*y^2 + 95143\
80*y + 16409093,
y^34 + 34*y^33 + 561*y^32 + 5984*y^31 + 46376*y^30 + 2\
78256*y^29 +
1344904*y^28 + 5379616*y^27 + 18156204*y^26 + 1735\
3055*y^25 +
25833537*y^24 + 5312152*y^23 + 21881025*y^22 + 154\
30534*y^21 +
23145801*y^20 + 30861068*y^19 + 27872968*y^18 + 17\
124952*y^17 +
27873223*y^16 + 30858484*y^15 + 23140973*y^14 + 15\
452362*y^13 +
21951303*y^12 + 5362540*y^11 + 25762851*y^10 + 171\
84126*y^9 +
18014271*y^8 + 5332492*y^7 + 1358334*y^6 + 297330*\
y^5 + 54824*y^4 +
7259*y^3 + 714*y^2 + 34*y + 1
]

"```
Presumably this is a wrong answer, see Dave Rusin posting cited above.

﻿