Applications, Examples and Libraries

Share your work here

 

Research work

The fractal structure’s researching.

Modeling of the fractal sets in the Maple program.

Municipal Budget Educational Establishment “School # 57” of Kirov district of Kazan

    Author:  Ibragimova Evelina

    Scientific advisor:  Alsu Gibadullina - mathematics teacher

    Translator:  Aigul Gibadullina

In Russian

ИбрагимоваЭ_Фракталы.docx

In English

Fractals_researching.doc

 

     ( Images - in attached files )

Table of contents:

Introduction

I. Studying of principles of fractals construction

II. Applied meaning of fractals

III. Researching of computer programs of fractals construction

Conclusion

Introduction

We don’t usually think about main point of things, which we have to do with every day. Environmental systems are many-sided, ever–changing and compli­cated, but they are formed by a little number of rules. Fractals are apt example of this – they are complicated, but based on simple regulations. Self – similarity is the main attribute of them.  Just one fractal element contains genetically information about all system.  This information have a forming role for all system. But some­times self – similarity is partial.

Hypothesis of the research. Fractals and various elements of the Universe have general principles of structural organization. It is a reason why the theory of frac­tals is instrument for cognition of the world.

Purpose of the research. Studying  of genetic analogy  between fractals and alive and non-living Universe systems with computer-based mathematical mod­eling in the Mapel’s computer space.

Problems of the research. 

  1. studying of principles of fractal’s construction;
  2. Detection of  general fractal content of physical, biological and artificial sys­tems;
  3. Researching of applied meaning of fractals;
  4. Searching of computer programs which can generate all of known fractals;
  5. Researching of fractals witch was assigned by complex variables;
  6. Formation of innovative ideas of using of fractals in different spaces;

The object of research.  Fractal structures, nature and society objects.

The subject of research. Manifestation of fractality in different objects of the Universe.

Methods of the researching.

  1. Studying and analysis of literature of research’s problem;
  2. Searching of computer programs which can generate fractals and experimenta­tion with them;
  3. Comparative analysis of principles of generating of fractals and structural or­ganizations of physical, biological and artificial systems;
  4. Generation and formulation of innovation ways to applied significance of fractals.

Applied significance.

Researching of universality of fractals gives general academic way of cognition of nature and society.

 

I. Studying of principles of fractal construction

We can see fractal constructions everywhere – from crystals and different accu­mulations (clouds, rivers, mountains, stars etc.) to complex ecosystems and bio­logical objects like fern leafs or human brain. Actually, the idea that frac­tal principles are genetic code of our Universe has been discussed for about fifteen years. The first attempt of modeling of the process of the Universe construction was done by A.D. Linde. We also know that young Andrey Saharov had solved “fractal” calculation problem – it was already half a century ago.

Now therefore, fractal picture of the world was intuitively anticipated by human genius and it inevitably manifested in its activity.

Fractals are divided into four groups in the traditional way: geometric (constructive), algebraical (dynamical), stochastical and natural.

The first group of fractals is geometric. It is the most demonstrative type of fractals, because we can instantly observe the self-similarity in it. This type of fractals is constructed in the basis of original figure by her fragmentation and real­izing of different transformations. Geometrical fractals ensue on repeating of this procedure. They are using in computer-generated graphics for generating the pic­tures of leafs, bush, dimensional structures, etc.

The second large group of fractals -  algebraical. This fractals are constructed by iteration of nonlinear displays, which set by simple formulas. There are two types of algebraical fractals – linear and nonlinear. The first of them are determined by first order equates (linear equates), and the second by nonlinear equates, their na­ture significantly brighter, richer and more diverse than first order equates.

The third known group of fractals – stochastical. It is generated by method of random modification of options in iterative process. Therefore, we get an objects which is similar to nature fractals – asymmetrical trees, rugged coasts, mountain scenery etc. Such fractals are useful in modeling of land topography, sea–surface and electrolysis process etc.

The fourth group of fractals is nature, they are dominate in our life. The main difference of such fractals is that they can’t demonstrate infinite self-similarity. There is “physical fractals” term in the classification concept for nature fractals, this term notes their naturalness. These fractals are created with two simple opera­tions: copy and scaling. We can indefinitely list examples of nature fractals: hu­man’s circulatory system, crowns and leafs of trees, lungs, etc.  It is impossible to show all diversity of nature fractals.

 

II. Applied meaning of fractals

Fractals are having incredibly widespread application nowadays.

In the medicine. Human’s organism is consists from fractal structures: circulatory system, bronchus, muscle, neuron system, etc. So it’s naturally that fractal algorithms are useful in the medicine. For example, assessment of rhythm of fractal dimension while electric diagrams analyzing allows to make more infor­mative and accurate view on the beginning of specific illnesses. Also fractals are using for high–quality processing of  X–ray images (in the experimental way). There are designing of new methods in the gastroenterology which allows to ex­plore gastrointestinal tract organs qualitative and painlessly. Actually, there are discoveries of application of fractal methods for diagnosis and treatment of cancer.

In the science. There are no scientific and technical areas without fractal calcu­lations nowadays. It happens due to the fact that majority of nature objects have fractal structures and dimension: coasts of the continents; natural resources alloca­tion; magnetic field anomaly; dissemination of surges and vibrations in an elastic environments; porous, solid and fungal bodies; crystals; turbulence; dynamic of complicated systems in general, etc. Fractals are useful in geology, geophysics, in the oil sciences… It’s impossible to list all the spaces of adaptability.

Modeling of chaotic processes, particularly, in description of population models.

In telecommunications. It’s naturally that fractals are popular in this area too. Natan Coen is person, who had started to use fractal antennas. Fractal antenna has very compact form which provides high productivity. Due to this, such antennas are used in marine and air transport, in personal devises. The theory of fractal an­tennas has become an independent, well-developed apparatus of synthesis and analysis of electric small antenna (ESA) nowadays. There are developments of possibility of fractal compression of the traffic which is transmitted through the web. The goal of this is more effective transfer of information.

In the visual effects. The theory of fractals has penetrated area of formation of different kinds of visualizations and creation of special effects in the computer graphics soon. This theory are very useful in modeling of nature landscapes in computer games. The film industry also has not been without fractal geometry. All the special effects are based in fractal structure: mountain landscape, lava, flame, fog, large flows and the same. In the modern level of the cinema creation of the special effects is impossible without modeling of fractals.

In the economics. The Veirshtrass’s function is famous example of stochastic fractals. Analysis of graph of the function in interactive mathematic environment Maple allows to make sure in fractal structure of function by way of entry of dif­ferent ranges of graphic visualization. In any indefinitely small area of the part graph of the function absolutely looks like area of this part in the all . The property of function is used in analysis of stock markets.

In the architect. Notably, fractal structures have become useful in the architect more earlier than B. Mandelbrode had discovered them. S.B. Pomorov, Doctor of Architecture, Professor, member of Russian Architect Union, talks about applica­tion of fractal theory in the architect in his article. Let’s see on the part of this arti­cle:

“Fractal structures were found in configuration of African tribal villages, in an­cient Vavilon’s ziggurats, in iconic buildings of ancient India and China, in gothic temples of ancient Russia .

We can see the high fractal level in Malevich’s Architectons. But they were cre­ated long before emergence of the notion of fractals in the architect. People started to use fractal algorithms on the architect morphogenesis consciously after Mandel­brot’s publications. It was made possible to use fractal geometry for analyzing of architectural forms.

Fractals had become available to the majority of specialists due to the comput­erization.  They had been incredibly attractive for architectors, designers and town planners in aesthetic, philosophical and psychological way. Fractal theory was per­ceived on emotional, sensual level in the first phase. The constant repression lead­ing to loss of sensuality.

Application of fractal structures is effective on the microenvironment designing level: interior, household items and their elements. Fractal structures introduction allows creating a new surroundings for people with fractal properties on all levels. It corresponds to nesting spaces.

Fractal formations are not a panacea or a new era in the architect history. But it’s a new way to design architect forms which enriches the architectural theory and practice language. The understanding of na­ture fractal impacts on architectural view of urban environment. An attempt to de­velop the method of architectural designing which will base in an in-depth fractal forms is especially interesting. Will this method base only on mathematics? Will it be different methods and features symbiosis? The practice experiments and re­searches will show us. It’s safe to say that modern fractal approach can be useful not only for analysis, but also for harmonic order and nature’s chaos, architect which may be semantic dominant in nature and historic context.”

Computer systems. Fractal data compression is the most useful fractal applica­tion in the computer science. This kind of compression is based on the fact that it’s easy to describe the real world by fractal geometry. Nevertheless, pictures are compressed better than by other methods (like jpeg or gif). Another one advantage is that picture isn’t pixelateing while compressing. Often picture looks better after increase in fractal compressing.

Basic concept for fractal computer graphics is “Fractal triangle”. Also there are “Fractal figure”, “Fractal object”, “Fractal line”, “Fractal composition”, “Parent object” and “Heir object”. However, it should be noted that fractal computer graphics has recently received as a kind of computer graphics of 21th century.

 The opportunities of fractal computer graphics cannot be overemphasized. It allows creating abstract compositions where we can realize a lot of moves: hori­zontal and vertical, diagonal directions, symmetry and asymmetry etc. Only a few programmers from all over the world know about fractal graphics today.  To what can we compare fractal picture? For example, with complex structure of crystal or with snowflake, the elements of which line up in the one complex composition. This property of fractal object can be useful in ornament creating or designing of decorative composition. Algorithms of synthesis of fractal rates which allows to reproduce copy of any picture too close to the original are developed today.

 

III. Researching of computer programs of fractal construction

Strict algorithms of fractals are really good for programming. There are a lot of computer programs which introduce fractals nowadays. Computer mathematic systems are stand out from over programs, especially, Maple. Computer mathe­matics is mathematic modeling tool. So programming represents genetic structure of fractal in these systems and we can see precise submission of fractal structure in the picture while we enter a number of iterations . This is the reason why mathematic fractals should be studied with computer mathematics.  The last dis­covery in fractal geometry has been made possible by powerful, modern com­puters. Fractal property researching is almost completely based on computer cal­culations. It allows making computer experiments which reproduce processes and phenomenon which we can’t experiment in the real world with.

Our school has been worked with computer mathematics Maple package more than 10 years. So we have unique opportunity to experiment with mathematic fractals, thanks to that we can understand how initial values impact on outcome   (it is stochastic fractal). For example, we have understood the meaning of the fact that color is the fourth dimension: color changing leads to changing of physical char­acteristics. That is what astrophysics mean talking about “multicolored” of the Universe. While fractal constructing in interactive mathematic environment we re­ceived graphic models which was like A. D. Linde’s model of the Universe. Perhaps, it demonstrates that Universe has fractal structure.

 

Conclusion

Scientists and philosophers argue, can we talk about universality of fractals in recent years. There are two groups of two opposite positions. We agree with the fact that fractals are universal. Due to the fact that movement is inherent property of material also we always have fractals wherever we have movement.  

We are convinced that fractal is genetic property of the Universe, but it is not mean that all the Universe elements to the one fractal organization. In deployment process fractal structure is undergoing a lot of fluctuations (deviations) and a lot of points of bifurcation (branching) lead grate number of fractal development varie­ties.  

Therefore, we think that fractals are general academic method of real world re­searching. Fractals give the methodology of nature and community researching.

In transitional, chaotic period of society development social life become harder. Different social systems clash. Ancient values are exchanged for new values literally in all spaces. So it’s vitally important for science to develop behavior strategies which allow to avoid tragic mistakes. We think that fractals play important role in developing of such technologies. And – synergy is theory of evolving systems self- organization. But evolution happens on fractal principles, as we know now.

 

P.S.  Images - in attached files

 

This is still a work in progress, but might be of use to anybody interested in Maxwell's Equations :-)

Examining_Maxwells_Equations.mw

 

Since we are getting many questions on how to create Math apps to add to the Maple Cloud. I wanted to go over the different GUI aspects of how you go about creating a Math App in Maple. The following Document also includes some code examples that are used in the the Math App but doesn't go into them in detail. For more details on the type of coding you do in a Math App see the DocumentTools package help page.

Some of the graphical features of the Math app don't display on Maple Primes so I'd recommend downloading this worksheet from here: HowToMathApp.mw to follow along.


 

NULL

How to make a Math App (An example of using the Document Tools).

 

This Document will provide a beginners guide on one way to make a Math app in Maple.

It will contain some coding examples as well as where to find different options in the user interface.

Step 1 Insert a Table

 

 

• 

When making a Math App in Maple I often start with a table. You can enter a table by going to Insert > Table...

  

 

• 

I often make the table 1 x 2 to start with as this gives an area for input and an area for the output (such as plots).

NULL

 

Add a plot component to one of the cells of the table

 

 

• 

From the Components  Palette you can add a Plot Component . Add it to the table by clicking and dragging it over.

 

 

NULL

NULL

Add another table inside the other cell

 

 

• 

In the other cell of the table I'll add another table to organize my use of buttons, sliders, and other components.
NULL

NULL

Add some components to the new table

 

 

• 

From the Components Palette I'll add a slider, or dial, or something else for interaction.

 

• 

You may also want a Math region for an area to enter functions and a button to tell Maple to do something with it.

 

NULL

NULL

Arrange the Components to look nice

 

 

• 

You can change how the components are placed either by resizing the tables or changing the text orientation of the contents of the cells.

 

NULL

Write some code for the interaction of the buttons.

 

 

• 

Using the DocumentTools  package there are lots of ways you can use the components. I often will start writing my code using a code edit region  as it provides better visualization for syntax. On MaplePrimes these display as collapsed so I will also include code blocks for the code.

 

NULL

NULL

Let's write something that takes the value of the slider and applies it to the dial

 

 

• 

Note that the names of the components will change in each section as they are copies of the previous section.

 

with(DocumentTools):

14

with(DocumentTools):
sv:=GetProperty('Slider2',value);
SetProperty('Dial2',value,sv);
• 

This code will only execute when run using the  button. Change the value of the slider below then run the code above to see what happens.

 

NULL

NULL

Move the code 'inside' the slider

 

 

• 

Instead of putting the code inside the code edit region where it needs to be executed, we'll next add the code to the value changed code of the slider.

 

• 

Right click the Slider then select "Edit Value Changed Code".

 

 

• 

This will open the code editor for the Slider

 

 

• 

Enter your code (ensuring you're using the correct name for the slider and dial).

 

• 

Notice that you don't need to use the with(DocumentTools): command as "use DocumentTools in ... end use;" is already filled in for you.

 

• 

Save the code in the Slider and hit the  button inside it once.

• 

Now move the slider.

 

• 

On future uses of the App you won't need to hit  as the code will be run on startup.

``

NULL

NULL

Add some more details to your App

 

 

• 

Let's make this app do something a bit more interesting than change the contents of a dial when a slider moves.

 

• 

The plan in the next few steps is to make this app allow a user to explore parameters changing in a sinusoidal expression.

 

• 

I'm going to add a second Math Component, put the expression A*sin(t*theta+phi)into both then uncheck the box in the context panel that says "Editable".

 

• 

To make the Math containers fit nicely I'll check the Auto-fit container box and set the Minimum Width Pixels to 200.

 

``

Add code to change the value of phi in the second Math Container when the Slider changes

 

 

Note: Maple uses Radians for trigonometric functions so we should convert the value of phi to Radians.

use DocumentTools in

 

use DocumentTools in 
phi_s:=GetProperty(Slider5,value);
expr:= GetProperty(MathContainer6,expression);
new_expr:=algsubs(phi=phi_s*Pi/180,expr);

SetProperty(MathContainer7,expression,new_expr);
end use:

``

``

Make the Dial go from 0 to 360°

 

 

• 

Click the Dial and look at the options in the context panel on the right.

 

• 

Update the values in the Dial so that the highest position is 360 and the spacing makes sense for the app.

  NULL

``

Have the Dial update the theta value of the expression

 

 

• 

Add the following code to the Dial

 

use DocumentTools in
use DocumentTools in 
theta_d:=GetProperty(Dial7,value);
phi_s:=GetProperty(Slider7,value); #This is added so that phi also has the value updated

expr:= GetProperty(MathContainer10,expression);
new_expr0:=algsubs(theta=theta_d*Pi/180,expr);
new_expr:=algsubs(phi=phi_s*Pi/180,new_expr0);  #This is added so that phi also has the value updated

SetProperty(MathContainer11,expression,new_expr);
end use:

 

• 

Update the value in the slider to include the value from the dial

 

use DocumentTools in

 

use DocumentTools in 

theta_d:=GetProperty(Dial7,value); #This is added so that theta also has the value updated
phi_s:=GetProperty(Slider7,value); 

expr:= GetProperty(MathContainer10,expression);
new_expr0:=algsubs(theta=theta_d*Pi/180,expr); #This is added so that theta also has the value updated
new_expr:=algsubs(phi=phi_s*Pi/180,new_expr0);  

SetProperty(MathContainer11,expression,new_expr);

end use:

 

``

``

Notice that the code in the Dial and Slider are the same

 

 

• 

Since the code in the Dial and Slider are the same it makes sense to put the code into a procedure that can be called from multiple places.

 

Note: The changes in the code such as local and the single quotes are not needed but make the code easier to read and less likely to run into errors if edited in the future (for example if you create a variable called dial8 it won't interfere now that the names are in quotes).

 

 

UpdateMath:=proc() 

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial8','value'); #Get value of theta from Dial
phi_s:=GetProperty('Slider8','value'); #Get value of phi from slider

expr:= GetProperty('MathContainer12','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
SetProperty('MathContainer13','expression',new_expr); # Update expression
end use:
end proc:

 

• 

Now change the code in the components to call the function using UpdateMath().

 

• 

Since the code above is only defined there it will need to be run once (but only once) before moving the components. Instead of leaving it here you can add it to the Startup code by clicking  or going to Edit > Startup code.  This code will run every time you open the Math App ensuring that it works right away.

 

• 

The startup code isn't defined in this document to allow progression of these steps.

 

``

Make the button initialize the app

 

 

• 

Since the startup code isn't defined in this document we are going to move this function into the button.

 

UpdateMath:=proc()

 

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial9','value'); #Get value of theta from Dial
phi_s:=GetProperty('Slider9','value'); #Get value of phi from slider

expr:= GetProperty('MathContainer14','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
SetProperty('MathContainer15','expression',new_expr); # Update expression
end use:
end proc:
• 

First click the button to rename it, you'll see the  option in the context panel on the right. Then add the code above to the button in the same way as the Slider an Dial (Right click and select Edit Click Code).

 

``

``

Now it is easy to add new components

 

 

• 

Now if we want to add new components we just have to change the one procedure.  Let's add a Volume Gauge to change the value of A.

 

• 

Click in the cell containing the Dial, the context panel will show the option to Insert a row below the Dial.

• 

Now drag a Volume Gauge into the new cell.

 

• 

Click in the cell and choose the alignment (from the context panel) that looks best to you. In this case I chose center:

 

``

 

NULL

``

Update the procedure code for the Gauge

 

 

• 

Add two lines for the volume gauge to get the value and sub it into the expression

UpdateMath:=proc()

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial11','value'); #Get value of theta from the Dial
phi_s:=GetProperty('Slider11','value'); #Get value of phi from the Slider
A_g:=GetProperty('VolumeGauge1','value'); #Get value of A from the Guage

expr:= GetProperty('MathContainer18','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr1:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
new_expr:=algsubs('A'=A_g,new_expr1);  # Put value of A in expression

SetProperty('MathContainer19','expression',new_expr); # Update expression
end use:
end proc:
• 

Now add

UpdateMath();

  to the Gauge.

  ``

``

Plot the changing expression

 

 

• 

Make a procedure to get the value in the second Math Container and plot it

 

PlotMath:=proc()

PlotMath:=proc()
	local expr, p;
	use DocumentTools in 

	expr:=GetProperty('MathContainer21','expression'); 

	p:=plot(expr,'t'=-Pi/2..Pi/2,'view'=[-Pi/2..Pi/2,-100..100]):

	SetProperty('Plot14','value',p)
	end use:
end proc:
• 

Put this procedure in the Initialize button and the call to it in the components.

 

NULL

``

Tidy up the app

 

 

• 

Now that we have an interactive app let's tidy it up a bit.

 

• 

The first thing I'd recommend in your own app is moving the code from the initialize button to startup code. In this document we choose to use the button instead to preserve earlier versions.

 

• 

You can also remove the borders around the components by clicking in the table and selecting "Interior Borders" > "None" and "Exterior Borders" > "None" from the context panel.

NULL

``

``

Now you have a Math App

 

 

• 

You can upload your Math App to the Maple Cloud to share with others by going to "File" > "Save to Cloud".

 

• 

I'd recommend also including a description of what your app does. You can do this nicely using another table and Text mode.

 

 

 

``

``

NULL

HowToMathApp.mw


 

Something a while ago made me wonder if people were interpretting the results of flattening the covid19 curve wrong.  Log graphs are good way to display a wide range of data in a compact way, but if you can't interpret it properly then you might as well think apples are oranges.  There was something someone said not to long ago that I didn't believe.  That person was Dr. Fauci, an American physician and immunologist who served as the director of the National Institute of Allergy and Infectious Diseases since 1984.  On April 9, 2020 he said, on the final death toll of the U.S. for Coronavirus, and I quote "looks more like 60,000 than the 100,000 to 200,000" U.S. officials had previously estimated ...  Back then I thought he was wrong, and actually now, he is wrong.

 

Some people just don't understand log graphs and I believe a lot of people are misinterpretting them.  Take a linear graph increasing in time and put it on a log scale and you naturally get a "flattening" curve without even doing anything.  But let's see what Dr. Fauci was seeing, and how he and likely many others, are misinterpretting the graphs.

 

Taking data from Worldometers.info/coronavirus we gather the total deaths

``

USTotaldeathsdates := ["Feb 15", "Feb 16", "Feb 17", "Feb 18", "Feb 19", "Feb 20", "Feb 21", "Feb 22", "Feb 23", "Feb 24", "Feb 25", "Feb 26", "Feb 27", "Feb 28", "Feb 29", "Mar 01", "Mar 02", "Mar 03", "Mar 04", "Mar 05", "Mar 06", "Mar 07", "Mar 08", "Mar 09", "Mar 10", "Mar 11", "Mar 12", "Mar 13", "Mar 14", "Mar 15", "Mar 16", "Mar 17", "Mar 18", "Mar 19", "Mar 20", "Mar 21", "Mar 22", "Mar 23", "Mar 24", "Mar 25", "Mar 26", "Mar 27", "Mar 28", "Mar 29", "Mar 30", "Mar 31", "Apr 01", "Apr 02", "Apr 03", "Apr 04", "Apr 05", "Apr 06", "Apr 07", "Apr 08", "Apr 09", "Apr 10", "Apr 11", "Apr 12", "Apr 13", "Apr 14", "Apr 15", "Apr 16", "Apr 17", "Apr 18", "Apr 19", "Apr 20", "Apr 21", "Apr 22", "Apr 23", "Apr 24", "Apr 25", "Apr 26", "Apr 27", "Apr 28", "Apr 29", "Apr 30", "May 01"]:

USTotalDeaths := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 9, 11, 12, 15, 19, 22, 26, 30, 38, 41, 48, 58, 73, 95, 121, 171, 239, 309, 374, 509, 689, 957, 1260, 1614, 2110, 2754, 3251, 4066, 5151, 6394, 7576, 8839, 10384, 11793, 13298, 15526, 17691, 19802, 22038, 24062, 25789, 27515, 30081, 32712, 34905, 37448, 39331, 40901, 42853, 45536, 47894, 50234, 52191, 54256, 55412, 56795, 59265, 61655, 63856, 65753]:

``

We will graph the data from when there were more than 100 deaths and up until April 9th when he made his prediction.

ListTools:-Search("Apr 09", USTotaldeathsdates)

55

(1)

ListTools:-Search(121, USTotalDeaths)

32

(2)

with(plots):

a := plots:-listplot(USTotalDeaths[32 .. 55], axis[2] = [mode = log], tickmarks = [[seq(i-31 = USTotaldeathsdates[i], i = 32 .. 55)], [100 = "100", 1000 = "1K", 10000 = "10K", 100000 = "100K", 1000000 = "1M"]], view = [default, 100 .. 1000000], color = "#FF9900", thickness = 6, labels = ["", "Total Coronavirus Deaths"], labeldirections = [default, vertical])

PLOT(CURVES(Matrix(24, 2, {(1, 1) = 1.0, (1, 2) = 121.0, (2, 1) = 2.0, (2, 2) = 171.0, (3, 1) = 3.0, (3, 2) = 239.0, (4, 1) = 4.0, (4, 2) = 309.0, (5, 1) = 5.0, (5, 2) = 374.0, (6, 1) = 6.0, (6, 2) = 509.0, (7, 1) = 7.0, (7, 2) = 689.0, (8, 1) = 8.0, (8, 2) = 957.0, (9, 1) = 9.0, (9, 2) = 1260.0, (10, 1) = 10.0, (10, 2) = 1614.0, (11, 1) = 11.0, (11, 2) = 2110.0, (12, 1) = 12.0, (12, 2) = 2754.0, (13, 1) = 13.0, (13, 2) = 3251.0, (14, 1) = 14.0, (14, 2) = 4066.0, (15, 1) = 15.0, (15, 2) = 5151.0, (16, 1) = 16.0, (16, 2) = 6394.0, (17, 1) = 17.0, (17, 2) = 7576.0, (18, 1) = 18.0, (18, 2) = 8839.0, (19, 1) = 19.0, (19, 2) = 10384.0, (20, 1) = 20.0, (20, 2) = 11793.0, (21, 1) = 21.0, (21, 2) = 13298.0, (22, 1) = 22.0, (22, 2) = 15526.0, (23, 1) = 23.0, (23, 2) = 17691.0, (24, 1) = 24.0, (24, 2) = 19802.0}, datatype = float[8])), COLOUR(RGB, 1.00000000, .60000000, 0.), THICKNESS(6), _AXIS[2](_MODE(1)), AXESTICKS([1 = "Mar 17", 2 = "Mar 18", 3 = "Mar 19", 4 = "Mar 20", 5 = "Mar 21", 6 = "Mar 22", 7 = "Mar 23", 8 = "Mar 24", 9 = "Mar 25", 10 = "Mar 26", 11 = "Mar 27", 12 = "Mar 28", 13 = "Mar 29", 14 = "Mar 30", 15 = "Mar 31", 16 = "Apr 01", 17 = "Apr 02", 18 = "Apr 03", 19 = "Apr 04", 20 = "Apr 05", 21 = "Apr 06", 22 = "Apr 07", 23 = "Apr 08", 24 = "Apr 09"], [100 = "100", 1000 = "1K", 10000 = "10K", 100000 = "100K", 1000000 = "1M"]), AXESLABELS("", "Total Coronavirus Deaths", FONT(DEFAULT), DEFAULT, VERTICAL), VIEW(DEFAULT, 100 .. 1000000))

(3)

b := plot([1000, 10000, 100000, 1000000], x = 0 .. 30, color = "#E6E6E6", thickness = 0):

``

NULL

 

plots:-display(a, b, title = "Total Deaths \n (Logarithmic scale)\n", titlefont = ["Helvetica", 18], size = [681, 400])

 

Just by looking at the graph you  can imagine Dr. Fauci saying look at that graph starting to level off and he would extrapolate an imaginary line that could if you wanted to level off around where he said 60,000.  And that's the confusion people have with these log graphs - people misinterpret them.  

Here's what it looks like today

a2 := plots:-listplot(USTotalDeaths[32 .. ()], axis[2] = [mode = log], tickmarks = [[seq(i-31 = USTotaldeathsdates[i], i = 32 .. nops(USTotaldeathsdates))], [100 = "100", 1000 = "1K", 10000 = "10K", 100000 = "100K", 1000000 = "1M"]], view = [default, 100 .. 1000000], color = "#FF9900", thickness = 6, labels = ["", "Total Coronavirus Deaths"], labeldirections = [default, vertical])

PLOT(CURVES(Matrix(46, 2, {(1, 1) = 1.0, (1, 2) = 121.0, (2, 1) = 2.0, (2, 2) = 171.0, (3, 1) = 3.0, (3, 2) = 239.0, (4, 1) = 4.0, (4, 2) = 309.0, (5, 1) = 5.0, (5, 2) = 374.0, (6, 1) = 6.0, (6, 2) = 509.0, (7, 1) = 7.0, (7, 2) = 689.0, (8, 1) = 8.0, (8, 2) = 957.0, (9, 1) = 9.0, (9, 2) = 1260.0, (10, 1) = 10.0, (10, 2) = 1614.0, (11, 1) = 11.0, (11, 2) = 2110.0, (12, 1) = 12.0, (12, 2) = 2754.0, (13, 1) = 13.0, (13, 2) = 3251.0, (14, 1) = 14.0, (14, 2) = 4066.0, (15, 1) = 15.0, (15, 2) = 5151.0, (16, 1) = 16.0, (16, 2) = 6394.0, (17, 1) = 17.0, (17, 2) = 7576.0, (18, 1) = 18.0, (18, 2) = 8839.0, (19, 1) = 19.0, (19, 2) = 10384.0, (20, 1) = 20.0, (20, 2) = 11793.0, (21, 1) = 21.0, (21, 2) = 13298.0, (22, 1) = 22.0, (22, 2) = 15526.0, (23, 1) = 23.0, (23, 2) = 17691.0, (24, 1) = 24.0, (24, 2) = 19802.0, (25, 1) = 25.0, (25, 2) = 22038.0, (26, 1) = 26.0, (26, 2) = 24062.0, (27, 1) = 27.0, (27, 2) = 25789.0, (28, 1) = 28.0, (28, 2) = 27515.0, (29, 1) = 29.0, (29, 2) = 30081.0, (30, 1) = 30.0, (30, 2) = 32712.0, (31, 1) = 31.0, (31, 2) = 34905.0, (32, 1) = 32.0, (32, 2) = 37448.0, (33, 1) = 33.0, (33, 2) = 39331.0, (34, 1) = 34.0, (34, 2) = 40901.0, (35, 1) = 35.0, (35, 2) = 42853.0, (36, 1) = 36.0, (36, 2) = 45536.0, (37, 1) = 37.0, (37, 2) = 47894.0, (38, 1) = 38.0, (38, 2) = 50234.0, (39, 1) = 39.0, (39, 2) = 52191.0, (40, 1) = 40.0, (40, 2) = 54256.0, (41, 1) = 41.0, (41, 2) = 55412.0, (42, 1) = 42.0, (42, 2) = 56795.0, (43, 1) = 43.0, (43, 2) = 59265.0, (44, 1) = 44.0, (44, 2) = 61655.0, (45, 1) = 45.0, (45, 2) = 63856.0, (46, 1) = 46.0, (46, 2) = 65753.0}, datatype = float[8])), COLOUR(RGB, 1.00000000, .60000000, 0.), THICKNESS(6), _AXIS[2](_MODE(1)), AXESTICKS([1 = "Mar 17", 2 = "Mar 18", 3 = "Mar 19", 4 = "Mar 20", 5 = "Mar 21", 6 = "Mar 22", 7 = "Mar 23", 8 = "Mar 24", 9 = "Mar 25", 10 = "Mar 26", 11 = "Mar 27", 12 = "Mar 28", 13 = "Mar 29", 14 = "Mar 30", 15 = "Mar 31", 16 = "Apr 01", 17 = "Apr 02", 18 = "Apr 03", 19 = "Apr 04", 20 = "Apr 05", 21 = "Apr 06", 22 = "Apr 07", 23 = "Apr 08", 24 = "Apr 09", 25 = "Apr 10", 26 = "Apr 11", 27 = "Apr 12", 28 = "Apr 13", 29 = "Apr 14", 30 = "Apr 15", 31 = "Apr 16", 32 = "Apr 17", 33 = "Apr 18", 34 = "Apr 19", 35 = "Apr 20", 36 = "Apr 21", 37 = "Apr 22", 38 = "Apr 23", 39 = "Apr 24", 40 = "Apr 25", 41 = "Apr 26", 42 = "Apr 27", 43 = "Apr 28", 44 = "Apr 29", 45 = "Apr 30", 46 = "May 01"], [100 = "100", 1000 = "1K", 10000 = "10K", 100000 = "100K", 1000000 = "1M"]), AXESLABELS("", "Total Coronavirus Deaths", FONT(DEFAULT), DEFAULT, VERTICAL), VIEW(DEFAULT, 100 .. 1000000))

(4)

b2 := plot([1000, 10000, 100000, 1000000], x = 0 .. 60, color = "#E6E6E6", thickness = 0)

PLOT(CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 1000.0, (2, 1) = .3154563015075377, (2, 2) = 1000.0, (3, 1) = .5899331427135678, (3, 2) = 1000.0, (4, 1) = .8986110572864321, (4, 2) = 1000.0, (5, 1) = 1.2093350894472361, (5, 2) = 1000.0, (6, 1) = 1.5185823045226128, (6, 2) = 1000.0, (7, 1) = 1.8052940592964821, (7, 2) = 1000.0, (8, 1) = 2.102167474371859, (8, 2) = 1000.0, (9, 1) = 2.409194384924623, (9, 2) = 1000.0, (10, 1) = 2.7152366562814065, (10, 2) = 1000.0, (11, 1) = 3.0300387497487438, (11, 2) = 1000.0, (12, 1) = 3.3073166050251253, (12, 2) = 1000.0, (13, 1) = 3.6194657969849247, (13, 2) = 1000.0, (14, 1) = 3.9328967035175877, (14, 2) = 1000.0, (15, 1) = 4.234945459296482, (15, 2) = 1000.0, (16, 1) = 4.509234666331658, (16, 2) = 1000.0, (17, 1) = 4.835391063316583, (17, 2) = 1000.0, (18, 1) = 5.111688313567838, (18, 2) = 1000.0, (19, 1) = 5.433087699497487, (19, 2) = 1000.0, (20, 1) = 5.717580615075376, (20, 2) = 1000.0, (21, 1) = 6.029714433165829, (21, 2) = 1000.0, (22, 1) = 6.32693964120603, (22, 2) = 1000.0, (23, 1) = 6.63706296482412, (23, 2) = 1000.0, (24, 1) = 6.9218529859296485, (24, 2) = 1000.0, (25, 1) = 7.229037497487436, (25, 2) = 1000.0, (26, 1) = 7.548115872361809, (26, 2) = 1000.0, (27, 1) = 7.825874535678391, (27, 2) = 1000.0, (28, 1) = 8.125861501507536, (28, 2) = 1000.0, (29, 1) = 8.435777390954772, (29, 2) = 1000.0, (30, 1) = 8.738969626130652, (30, 2) = 1000.0, (31, 1) = 9.032323703517587, (31, 2) = 1000.0, (32, 1) = 9.358043390954773, (32, 2) = 1000.0, (33, 1) = 9.650717017085425, (33, 2) = 1000.0, (34, 1) = 9.963208582914572, (34, 2) = 1000.0, (35, 1) = 10.246372386934672, (35, 2) = 1000.0, (36, 1) = 10.555945218090452, (36, 2) = 1000.0, (37, 1) = 10.847229126633163, (37, 2) = 1000.0, (38, 1) = 11.151704740703517, (38, 2) = 1000.0, (39, 1) = 11.449385306532662, (39, 2) = 1000.0, (40, 1) = 11.761029271356783, (40, 2) = 1000.0, (41, 1) = 12.06117944924623, (41, 2) = 1000.0, (42, 1) = 12.368126357788944, (42, 2) = 1000.0, (43, 1) = 12.672531590954774, (43, 2) = 1000.0, (44, 1) = 12.952248385929648, (44, 2) = 1000.0, (45, 1) = 13.272835398994975, (45, 2) = 1000.0, (46, 1) = 13.55957224522613, (46, 2) = 1000.0, (47, 1) = 13.865293528643216, (47, 2) = 1000.0, (48, 1) = 14.157907806030149, (48, 2) = 1000.0, (49, 1) = 14.482818355778894, (49, 2) = 1000.0, (50, 1) = 14.76416701809045, (50, 2) = 1000.0, (51, 1) = 15.083500266331658, (51, 2) = 1000.0, (52, 1) = 15.374537855276381, (52, 2) = 1000.0, (53, 1) = 15.69288723919598, (53, 2) = 1000.0, (54, 1) = 15.967568918592962, (54, 2) = 1000.0, (55, 1) = 16.28039928844221, (55, 2) = 1000.0, (56, 1) = 16.582577981909548, (56, 2) = 1000.0, (57, 1) = 16.88455926934673, (57, 2) = 1000.0, (58, 1) = 17.18542962211055, (58, 2) = 1000.0, (59, 1) = 17.474471840201005, (59, 2) = 1000.0, (60, 1) = 17.786934132663315, (60, 2) = 1000.0, (61, 1) = 18.084733353768844, (61, 2) = 1000.0, (62, 1) = 18.398153011055275, (62, 2) = 1000.0, (63, 1) = 18.681873274371856, (63, 2) = 1000.0, (64, 1) = 18.995437278391957, (64, 2) = 1000.0, (65, 1) = 19.295776953768843, (65, 2) = 1000.0, (66, 1) = 19.595385593969848, (66, 2) = 1000.0, (67, 1) = 19.908327979899497, (67, 2) = 1000.0, (68, 1) = 20.19655934170854, (68, 2) = 1000.0, (69, 1) = 20.491747682412058, (69, 2) = 1000.0, (70, 1) = 20.817670685427135, (70, 2) = 1000.0, (71, 1) = 21.112767268341706, (71, 2) = 1000.0, (72, 1) = 21.414558798994975, (72, 2) = 1000.0, (73, 1) = 21.7214730120603, (73, 2) = 1000.0, (74, 1) = 22.003586897487438, (74, 2) = 1000.0, (75, 1) = 22.304311163819094, (75, 2) = 1000.0, (76, 1) = 22.602746297487435, (76, 2) = 1000.0, (77, 1) = 22.92197912562814, (77, 2) = 1000.0, (78, 1) = 23.20368826733668, (78, 2) = 1000.0, (79, 1) = 23.528722136683413, (79, 2) = 1000.0, (80, 1) = 23.822040144723616, (80, 2) = 1000.0, (81, 1) = 24.112262981909545, (81, 2) = 1000.0, (82, 1) = 24.42434576683417, (82, 2) = 1000.0, (83, 1) = 24.73769099095477, (83, 2) = 1000.0, (84, 1) = 25.022788748743714, (84, 2) = 1000.0, (85, 1) = 25.325549903517587, (85, 2) = 1000.0, (86, 1) = 25.6210152, (86, 2) = 1000.0, (87, 1) = 25.94130269849246, (87, 2) = 1000.0, (88, 1) = 26.21844043417085, (88, 2) = 1000.0, (89, 1) = 26.536743198994973, (89, 2) = 1000.0, (90, 1) = 26.835964531658288, (90, 2) = 1000.0, (91, 1) = 27.13229571256281, (91, 2) = 1000.0, (92, 1) = 27.428862627135675, (92, 2) = 1000.0, (93, 1) = 27.73134210753769, (93, 2) = 1000.0, (94, 1) = 28.05196528944723, (94, 2) = 1000.0, (95, 1) = 28.345945350753766, (95, 2) = 1000.0, (96, 1) = 28.636141420100497, (96, 2) = 1000.0, (97, 1) = 28.946356242211053, (97, 2) = 1000.0, (98, 1) = 29.255895753768844, (98, 2) = 1000.0, (99, 1) = 29.53372584723618, (99, 2) = 1000.0, (100, 1) = 29.862835628140704, (100, 2) = 1000.0, (101, 1) = 30.138219431155775, (101, 2) = 1000.0, (102, 1) = 30.46031172060301, (102, 2) = 1000.0, (103, 1) = 30.767717608040197, (103, 2) = 1000.0, (104, 1) = 31.042194449246228, (104, 2) = 1000.0, (105, 1) = 31.350872363819093, (105, 2) = 1000.0, (106, 1) = 31.661596395979895, (106, 2) = 1000.0, (107, 1) = 31.970843611055276, (107, 2) = 1000.0, (108, 1) = 32.25755536582914, (108, 2) = 1000.0, (109, 1) = 32.55442878090452, (109, 2) = 1000.0, (110, 1) = 32.86145569145728, (110, 2) = 1000.0, (111, 1) = 33.16749796281407, (111, 2) = 1000.0, (112, 1) = 33.4823000562814, (112, 2) = 1000.0, (113, 1) = 33.759577911557784, (113, 2) = 1000.0, (114, 1) = 34.07172710351758, (114, 2) = 1000.0, (115, 1) = 34.38515801005025, (115, 2) = 1000.0, (116, 1) = 34.687206765829146, (116, 2) = 1000.0, (117, 1) = 34.96149597286432, (117, 2) = 1000.0, (118, 1) = 35.28765236984924, (118, 2) = 1000.0, (119, 1) = 35.563949620100495, (119, 2) = 1000.0, (120, 1) = 35.88534900603015, (120, 2) = 1000.0, (121, 1) = 36.16984192160804, (121, 2) = 1000.0, (122, 1) = 36.48197573969849, (122, 2) = 1000.0, (123, 1) = 36.77920094773869, (123, 2) = 1000.0, (124, 1) = 37.08932427135678, (124, 2) = 1000.0, (125, 1) = 37.37411429246231, (125, 2) = 1000.0, (126, 1) = 37.6812988040201, (126, 2) = 1000.0, (127, 1) = 38.00037717889447, (127, 2) = 1000.0, (128, 1) = 38.27813584221106, (128, 2) = 1000.0, (129, 1) = 38.5781228080402, (129, 2) = 1000.0, (130, 1) = 38.88803869748743, (130, 2) = 1000.0, (131, 1) = 39.191230932663316, (131, 2) = 1000.0, (132, 1) = 39.484585010050246, (132, 2) = 1000.0, (133, 1) = 39.81030469748743, (133, 2) = 1000.0, (134, 1) = 40.10297832361809, (134, 2) = 1000.0, (135, 1) = 40.41546988944723, (135, 2) = 1000.0, (136, 1) = 40.69863369346733, (136, 2) = 1000.0, (137, 1) = 41.008206524623105, (137, 2) = 1000.0, (138, 1) = 41.29949043316583, (138, 2) = 1000.0, (139, 1) = 41.60396604723618, (139, 2) = 1000.0, (140, 1) = 41.90164661306532, (140, 2) = 1000.0, (141, 1) = 42.213290577889445, (141, 2) = 1000.0, (142, 1) = 42.51344075577889, (142, 2) = 1000.0, (143, 1) = 42.8203876643216, (143, 2) = 1000.0, (144, 1) = 43.12479289748743, (144, 2) = 1000.0, (145, 1) = 43.404509692462305, (145, 2) = 1000.0, (146, 1) = 43.72509670552763, (146, 2) = 1000.0, (147, 1) = 44.01183355175879, (147, 2) = 1000.0, (148, 1) = 44.31755483517587, (148, 2) = 1000.0, (149, 1) = 44.610169112562815, (149, 2) = 1000.0, (150, 1) = 44.93507966231155, (150, 2) = 1000.0, (151, 1) = 45.21642832462311, (151, 2) = 1000.0, (152, 1) = 45.53576157286432, (152, 2) = 1000.0, (153, 1) = 45.826799161809035, (153, 2) = 1000.0, (154, 1) = 46.14514854572864, (154, 2) = 1000.0, (155, 1) = 46.41983022512562, (155, 2) = 1000.0, (156, 1) = 46.73266059497487, (156, 2) = 1000.0, (157, 1) = 47.03483928844221, (157, 2) = 1000.0, (158, 1) = 47.33682057587939, (158, 2) = 1000.0, (159, 1) = 47.63769092864321, (159, 2) = 1000.0, (160, 1) = 47.92673314673367, (160, 2) = 1000.0, (161, 1) = 48.23919543919598, (161, 2) = 1000.0, (162, 1) = 48.5369946603015, (162, 2) = 1000.0, (163, 1) = 48.85041431758794, (163, 2) = 1000.0, (164, 1) = 49.134134580904515, (164, 2) = 1000.0, (165, 1) = 49.447698584924616, (165, 2) = 1000.0, (166, 1) = 49.748038260301506, (166, 2) = 1000.0, (167, 1) = 50.047646900502514, (167, 2) = 1000.0, (168, 1) = 50.36058928643215, (168, 2) = 1000.0, (169, 1) = 50.6488206482412, (169, 2) = 1000.0, (170, 1) = 50.94400898894472, (170, 2) = 1000.0, (171, 1) = 51.26993199195979, (171, 2) = 1000.0, (172, 1) = 51.56502857487437, (172, 2) = 1000.0, (173, 1) = 51.86682010552764, (173, 2) = 1000.0, (174, 1) = 52.17373431859296, (174, 2) = 1000.0, (175, 1) = 52.4558482040201, (175, 2) = 1000.0, (176, 1) = 52.756572470351756, (176, 2) = 1000.0, (177, 1) = 53.0550076040201, (177, 2) = 1000.0, (178, 1) = 53.374240432160796, (178, 2) = 1000.0, (179, 1) = 53.65594957386934, (179, 2) = 1000.0, (180, 1) = 53.980983443216076, (180, 2) = 1000.0, (181, 1) = 54.27430145125628, (181, 2) = 1000.0, (182, 1) = 54.56452428844221, (182, 2) = 1000.0, (183, 1) = 54.876607073366834, (183, 2) = 1000.0, (184, 1) = 55.18995229748743, (184, 2) = 1000.0, (185, 1) = 55.47505005527638, (185, 2) = 1000.0, (186, 1) = 55.777811210050245, (186, 2) = 1000.0, (187, 1) = 56.07327650653266, (187, 2) = 1000.0, (188, 1) = 56.39356400502512, (188, 2) = 1000.0, (189, 1) = 56.67070174070351, (189, 2) = 1000.0, (190, 1) = 56.98900450552763, (190, 2) = 1000.0, (191, 1) = 57.288225838190954, (191, 2) = 1000.0, (192, 1) = 57.58455701909548, (192, 2) = 1000.0, (193, 1) = 57.881123933668334, (193, 2) = 1000.0, (194, 1) = 58.18360341407034, (194, 2) = 1000.0, (195, 1) = 58.504226595979894, (195, 2) = 1000.0, (196, 1) = 58.79820665728643, (196, 2) = 1000.0, (197, 1) = 59.08840272663316, (197, 2) = 1000.0, (198, 1) = 59.398617548743715, (198, 2) = 1000.0, (199, 1) = 59.708157060301495, (199, 2) = 1000.0, (200, 1) = 60.0, (200, 2) = 1000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 10000.0, (2, 1) = .3154563015075377, (2, 2) = 10000.0, (3, 1) = .5899331427135678, (3, 2) = 10000.0, (4, 1) = .8986110572864321, (4, 2) = 10000.0, (5, 1) = 1.2093350894472361, (5, 2) = 10000.0, (6, 1) = 1.5185823045226128, (6, 2) = 10000.0, (7, 1) = 1.8052940592964821, (7, 2) = 10000.0, (8, 1) = 2.102167474371859, (8, 2) = 10000.0, (9, 1) = 2.409194384924623, (9, 2) = 10000.0, (10, 1) = 2.7152366562814065, (10, 2) = 10000.0, (11, 1) = 3.0300387497487438, (11, 2) = 10000.0, (12, 1) = 3.3073166050251253, (12, 2) = 10000.0, (13, 1) = 3.6194657969849247, (13, 2) = 10000.0, (14, 1) = 3.9328967035175877, (14, 2) = 10000.0, (15, 1) = 4.234945459296482, (15, 2) = 10000.0, (16, 1) = 4.509234666331658, (16, 2) = 10000.0, (17, 1) = 4.835391063316583, (17, 2) = 10000.0, (18, 1) = 5.111688313567838, (18, 2) = 10000.0, (19, 1) = 5.433087699497487, (19, 2) = 10000.0, (20, 1) = 5.717580615075376, (20, 2) = 10000.0, (21, 1) = 6.029714433165829, (21, 2) = 10000.0, (22, 1) = 6.32693964120603, (22, 2) = 10000.0, (23, 1) = 6.63706296482412, (23, 2) = 10000.0, (24, 1) = 6.9218529859296485, (24, 2) = 10000.0, (25, 1) = 7.229037497487436, (25, 2) = 10000.0, (26, 1) = 7.548115872361809, (26, 2) = 10000.0, (27, 1) = 7.825874535678391, (27, 2) = 10000.0, (28, 1) = 8.125861501507536, (28, 2) = 10000.0, (29, 1) = 8.435777390954772, (29, 2) = 10000.0, (30, 1) = 8.738969626130652, (30, 2) = 10000.0, (31, 1) = 9.032323703517587, (31, 2) = 10000.0, (32, 1) = 9.358043390954773, (32, 2) = 10000.0, (33, 1) = 9.650717017085425, (33, 2) = 10000.0, (34, 1) = 9.963208582914572, (34, 2) = 10000.0, (35, 1) = 10.246372386934672, (35, 2) = 10000.0, (36, 1) = 10.555945218090452, (36, 2) = 10000.0, (37, 1) = 10.847229126633163, (37, 2) = 10000.0, (38, 1) = 11.151704740703517, (38, 2) = 10000.0, (39, 1) = 11.449385306532662, (39, 2) = 10000.0, (40, 1) = 11.761029271356783, (40, 2) = 10000.0, (41, 1) = 12.06117944924623, (41, 2) = 10000.0, (42, 1) = 12.368126357788944, (42, 2) = 10000.0, (43, 1) = 12.672531590954774, (43, 2) = 10000.0, (44, 1) = 12.952248385929648, (44, 2) = 10000.0, (45, 1) = 13.272835398994975, (45, 2) = 10000.0, (46, 1) = 13.55957224522613, (46, 2) = 10000.0, (47, 1) = 13.865293528643216, (47, 2) = 10000.0, (48, 1) = 14.157907806030149, (48, 2) = 10000.0, (49, 1) = 14.482818355778894, (49, 2) = 10000.0, (50, 1) = 14.76416701809045, (50, 2) = 10000.0, (51, 1) = 15.083500266331658, (51, 2) = 10000.0, (52, 1) = 15.374537855276381, (52, 2) = 10000.0, (53, 1) = 15.69288723919598, (53, 2) = 10000.0, (54, 1) = 15.967568918592962, (54, 2) = 10000.0, (55, 1) = 16.28039928844221, (55, 2) = 10000.0, (56, 1) = 16.582577981909548, (56, 2) = 10000.0, (57, 1) = 16.88455926934673, (57, 2) = 10000.0, (58, 1) = 17.18542962211055, (58, 2) = 10000.0, (59, 1) = 17.474471840201005, (59, 2) = 10000.0, (60, 1) = 17.786934132663315, (60, 2) = 10000.0, (61, 1) = 18.084733353768844, (61, 2) = 10000.0, (62, 1) = 18.398153011055275, (62, 2) = 10000.0, (63, 1) = 18.681873274371856, (63, 2) = 10000.0, (64, 1) = 18.995437278391957, (64, 2) = 10000.0, (65, 1) = 19.295776953768843, (65, 2) = 10000.0, (66, 1) = 19.595385593969848, (66, 2) = 10000.0, (67, 1) = 19.908327979899497, (67, 2) = 10000.0, (68, 1) = 20.19655934170854, (68, 2) = 10000.0, (69, 1) = 20.491747682412058, (69, 2) = 10000.0, (70, 1) = 20.817670685427135, (70, 2) = 10000.0, (71, 1) = 21.112767268341706, (71, 2) = 10000.0, (72, 1) = 21.414558798994975, (72, 2) = 10000.0, (73, 1) = 21.7214730120603, (73, 2) = 10000.0, (74, 1) = 22.003586897487438, (74, 2) = 10000.0, (75, 1) = 22.304311163819094, (75, 2) = 10000.0, (76, 1) = 22.602746297487435, (76, 2) = 10000.0, (77, 1) = 22.92197912562814, (77, 2) = 10000.0, (78, 1) = 23.20368826733668, (78, 2) = 10000.0, (79, 1) = 23.528722136683413, (79, 2) = 10000.0, (80, 1) = 23.822040144723616, (80, 2) = 10000.0, (81, 1) = 24.112262981909545, (81, 2) = 10000.0, (82, 1) = 24.42434576683417, (82, 2) = 10000.0, (83, 1) = 24.73769099095477, (83, 2) = 10000.0, (84, 1) = 25.022788748743714, (84, 2) = 10000.0, (85, 1) = 25.325549903517587, (85, 2) = 10000.0, (86, 1) = 25.6210152, (86, 2) = 10000.0, (87, 1) = 25.94130269849246, (87, 2) = 10000.0, (88, 1) = 26.21844043417085, (88, 2) = 10000.0, (89, 1) = 26.536743198994973, (89, 2) = 10000.0, (90, 1) = 26.835964531658288, (90, 2) = 10000.0, (91, 1) = 27.13229571256281, (91, 2) = 10000.0, (92, 1) = 27.428862627135675, (92, 2) = 10000.0, (93, 1) = 27.73134210753769, (93, 2) = 10000.0, (94, 1) = 28.05196528944723, (94, 2) = 10000.0, (95, 1) = 28.345945350753766, (95, 2) = 10000.0, (96, 1) = 28.636141420100497, (96, 2) = 10000.0, (97, 1) = 28.946356242211053, (97, 2) = 10000.0, (98, 1) = 29.255895753768844, (98, 2) = 10000.0, (99, 1) = 29.53372584723618, (99, 2) = 10000.0, (100, 1) = 29.862835628140704, (100, 2) = 10000.0, (101, 1) = 30.138219431155775, (101, 2) = 10000.0, (102, 1) = 30.46031172060301, (102, 2) = 10000.0, (103, 1) = 30.767717608040197, (103, 2) = 10000.0, (104, 1) = 31.042194449246228, (104, 2) = 10000.0, (105, 1) = 31.350872363819093, (105, 2) = 10000.0, (106, 1) = 31.661596395979895, (106, 2) = 10000.0, (107, 1) = 31.970843611055276, (107, 2) = 10000.0, (108, 1) = 32.25755536582914, (108, 2) = 10000.0, (109, 1) = 32.55442878090452, (109, 2) = 10000.0, (110, 1) = 32.86145569145728, (110, 2) = 10000.0, (111, 1) = 33.16749796281407, (111, 2) = 10000.0, (112, 1) = 33.4823000562814, (112, 2) = 10000.0, (113, 1) = 33.759577911557784, (113, 2) = 10000.0, (114, 1) = 34.07172710351758, (114, 2) = 10000.0, (115, 1) = 34.38515801005025, (115, 2) = 10000.0, (116, 1) = 34.687206765829146, (116, 2) = 10000.0, (117, 1) = 34.96149597286432, (117, 2) = 10000.0, (118, 1) = 35.28765236984924, (118, 2) = 10000.0, (119, 1) = 35.563949620100495, (119, 2) = 10000.0, (120, 1) = 35.88534900603015, (120, 2) = 10000.0, (121, 1) = 36.16984192160804, (121, 2) = 10000.0, (122, 1) = 36.48197573969849, (122, 2) = 10000.0, (123, 1) = 36.77920094773869, (123, 2) = 10000.0, (124, 1) = 37.08932427135678, (124, 2) = 10000.0, (125, 1) = 37.37411429246231, (125, 2) = 10000.0, (126, 1) = 37.6812988040201, (126, 2) = 10000.0, (127, 1) = 38.00037717889447, (127, 2) = 10000.0, (128, 1) = 38.27813584221106, (128, 2) = 10000.0, (129, 1) = 38.5781228080402, (129, 2) = 10000.0, (130, 1) = 38.88803869748743, (130, 2) = 10000.0, (131, 1) = 39.191230932663316, (131, 2) = 10000.0, (132, 1) = 39.484585010050246, (132, 2) = 10000.0, (133, 1) = 39.81030469748743, (133, 2) = 10000.0, (134, 1) = 40.10297832361809, (134, 2) = 10000.0, (135, 1) = 40.41546988944723, (135, 2) = 10000.0, (136, 1) = 40.69863369346733, (136, 2) = 10000.0, (137, 1) = 41.008206524623105, (137, 2) = 10000.0, (138, 1) = 41.29949043316583, (138, 2) = 10000.0, (139, 1) = 41.60396604723618, (139, 2) = 10000.0, (140, 1) = 41.90164661306532, (140, 2) = 10000.0, (141, 1) = 42.213290577889445, (141, 2) = 10000.0, (142, 1) = 42.51344075577889, (142, 2) = 10000.0, (143, 1) = 42.8203876643216, (143, 2) = 10000.0, (144, 1) = 43.12479289748743, (144, 2) = 10000.0, (145, 1) = 43.404509692462305, (145, 2) = 10000.0, (146, 1) = 43.72509670552763, (146, 2) = 10000.0, (147, 1) = 44.01183355175879, (147, 2) = 10000.0, (148, 1) = 44.31755483517587, (148, 2) = 10000.0, (149, 1) = 44.610169112562815, (149, 2) = 10000.0, (150, 1) = 44.93507966231155, (150, 2) = 10000.0, (151, 1) = 45.21642832462311, (151, 2) = 10000.0, (152, 1) = 45.53576157286432, (152, 2) = 10000.0, (153, 1) = 45.826799161809035, (153, 2) = 10000.0, (154, 1) = 46.14514854572864, (154, 2) = 10000.0, (155, 1) = 46.41983022512562, (155, 2) = 10000.0, (156, 1) = 46.73266059497487, (156, 2) = 10000.0, (157, 1) = 47.03483928844221, (157, 2) = 10000.0, (158, 1) = 47.33682057587939, (158, 2) = 10000.0, (159, 1) = 47.63769092864321, (159, 2) = 10000.0, (160, 1) = 47.92673314673367, (160, 2) = 10000.0, (161, 1) = 48.23919543919598, (161, 2) = 10000.0, (162, 1) = 48.5369946603015, (162, 2) = 10000.0, (163, 1) = 48.85041431758794, (163, 2) = 10000.0, (164, 1) = 49.134134580904515, (164, 2) = 10000.0, (165, 1) = 49.447698584924616, (165, 2) = 10000.0, (166, 1) = 49.748038260301506, (166, 2) = 10000.0, (167, 1) = 50.047646900502514, (167, 2) = 10000.0, (168, 1) = 50.36058928643215, (168, 2) = 10000.0, (169, 1) = 50.6488206482412, (169, 2) = 10000.0, (170, 1) = 50.94400898894472, (170, 2) = 10000.0, (171, 1) = 51.26993199195979, (171, 2) = 10000.0, (172, 1) = 51.56502857487437, (172, 2) = 10000.0, (173, 1) = 51.86682010552764, (173, 2) = 10000.0, (174, 1) = 52.17373431859296, (174, 2) = 10000.0, (175, 1) = 52.4558482040201, (175, 2) = 10000.0, (176, 1) = 52.756572470351756, (176, 2) = 10000.0, (177, 1) = 53.0550076040201, (177, 2) = 10000.0, (178, 1) = 53.374240432160796, (178, 2) = 10000.0, (179, 1) = 53.65594957386934, (179, 2) = 10000.0, (180, 1) = 53.980983443216076, (180, 2) = 10000.0, (181, 1) = 54.27430145125628, (181, 2) = 10000.0, (182, 1) = 54.56452428844221, (182, 2) = 10000.0, (183, 1) = 54.876607073366834, (183, 2) = 10000.0, (184, 1) = 55.18995229748743, (184, 2) = 10000.0, (185, 1) = 55.47505005527638, (185, 2) = 10000.0, (186, 1) = 55.777811210050245, (186, 2) = 10000.0, (187, 1) = 56.07327650653266, (187, 2) = 10000.0, (188, 1) = 56.39356400502512, (188, 2) = 10000.0, (189, 1) = 56.67070174070351, (189, 2) = 10000.0, (190, 1) = 56.98900450552763, (190, 2) = 10000.0, (191, 1) = 57.288225838190954, (191, 2) = 10000.0, (192, 1) = 57.58455701909548, (192, 2) = 10000.0, (193, 1) = 57.881123933668334, (193, 2) = 10000.0, (194, 1) = 58.18360341407034, (194, 2) = 10000.0, (195, 1) = 58.504226595979894, (195, 2) = 10000.0, (196, 1) = 58.79820665728643, (196, 2) = 10000.0, (197, 1) = 59.08840272663316, (197, 2) = 10000.0, (198, 1) = 59.398617548743715, (198, 2) = 10000.0, (199, 1) = 59.708157060301495, (199, 2) = 10000.0, (200, 1) = 60.0, (200, 2) = 10000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 100000.0, (2, 1) = .3154563015075377, (2, 2) = 100000.0, (3, 1) = .5899331427135678, (3, 2) = 100000.0, (4, 1) = .8986110572864321, (4, 2) = 100000.0, (5, 1) = 1.2093350894472361, (5, 2) = 100000.0, (6, 1) = 1.5185823045226128, (6, 2) = 100000.0, (7, 1) = 1.8052940592964821, (7, 2) = 100000.0, (8, 1) = 2.102167474371859, (8, 2) = 100000.0, (9, 1) = 2.409194384924623, (9, 2) = 100000.0, (10, 1) = 2.7152366562814065, (10, 2) = 100000.0, (11, 1) = 3.0300387497487438, (11, 2) = 100000.0, (12, 1) = 3.3073166050251253, (12, 2) = 100000.0, (13, 1) = 3.6194657969849247, (13, 2) = 100000.0, (14, 1) = 3.9328967035175877, (14, 2) = 100000.0, (15, 1) = 4.234945459296482, (15, 2) = 100000.0, (16, 1) = 4.509234666331658, (16, 2) = 100000.0, (17, 1) = 4.835391063316583, (17, 2) = 100000.0, (18, 1) = 5.111688313567838, (18, 2) = 100000.0, (19, 1) = 5.433087699497487, (19, 2) = 100000.0, (20, 1) = 5.717580615075376, (20, 2) = 100000.0, (21, 1) = 6.029714433165829, (21, 2) = 100000.0, (22, 1) = 6.32693964120603, (22, 2) = 100000.0, (23, 1) = 6.63706296482412, (23, 2) = 100000.0, (24, 1) = 6.9218529859296485, (24, 2) = 100000.0, (25, 1) = 7.229037497487436, (25, 2) = 100000.0, (26, 1) = 7.548115872361809, (26, 2) = 100000.0, (27, 1) = 7.825874535678391, (27, 2) = 100000.0, (28, 1) = 8.125861501507536, (28, 2) = 100000.0, (29, 1) = 8.435777390954772, (29, 2) = 100000.0, (30, 1) = 8.738969626130652, (30, 2) = 100000.0, (31, 1) = 9.032323703517587, (31, 2) = 100000.0, (32, 1) = 9.358043390954773, (32, 2) = 100000.0, (33, 1) = 9.650717017085425, (33, 2) = 100000.0, (34, 1) = 9.963208582914572, (34, 2) = 100000.0, (35, 1) = 10.246372386934672, (35, 2) = 100000.0, (36, 1) = 10.555945218090452, (36, 2) = 100000.0, (37, 1) = 10.847229126633163, (37, 2) = 100000.0, (38, 1) = 11.151704740703517, (38, 2) = 100000.0, (39, 1) = 11.449385306532662, (39, 2) = 100000.0, (40, 1) = 11.761029271356783, (40, 2) = 100000.0, (41, 1) = 12.06117944924623, (41, 2) = 100000.0, (42, 1) = 12.368126357788944, (42, 2) = 100000.0, (43, 1) = 12.672531590954774, (43, 2) = 100000.0, (44, 1) = 12.952248385929648, (44, 2) = 100000.0, (45, 1) = 13.272835398994975, (45, 2) = 100000.0, (46, 1) = 13.55957224522613, (46, 2) = 100000.0, (47, 1) = 13.865293528643216, (47, 2) = 100000.0, (48, 1) = 14.157907806030149, (48, 2) = 100000.0, (49, 1) = 14.482818355778894, (49, 2) = 100000.0, (50, 1) = 14.76416701809045, (50, 2) = 100000.0, (51, 1) = 15.083500266331658, (51, 2) = 100000.0, (52, 1) = 15.374537855276381, (52, 2) = 100000.0, (53, 1) = 15.69288723919598, (53, 2) = 100000.0, (54, 1) = 15.967568918592962, (54, 2) = 100000.0, (55, 1) = 16.28039928844221, (55, 2) = 100000.0, (56, 1) = 16.582577981909548, (56, 2) = 100000.0, (57, 1) = 16.88455926934673, (57, 2) = 100000.0, (58, 1) = 17.18542962211055, (58, 2) = 100000.0, (59, 1) = 17.474471840201005, (59, 2) = 100000.0, (60, 1) = 17.786934132663315, (60, 2) = 100000.0, (61, 1) = 18.084733353768844, (61, 2) = 100000.0, (62, 1) = 18.398153011055275, (62, 2) = 100000.0, (63, 1) = 18.681873274371856, (63, 2) = 100000.0, (64, 1) = 18.995437278391957, (64, 2) = 100000.0, (65, 1) = 19.295776953768843, (65, 2) = 100000.0, (66, 1) = 19.595385593969848, (66, 2) = 100000.0, (67, 1) = 19.908327979899497, (67, 2) = 100000.0, (68, 1) = 20.19655934170854, (68, 2) = 100000.0, (69, 1) = 20.491747682412058, (69, 2) = 100000.0, (70, 1) = 20.817670685427135, (70, 2) = 100000.0, (71, 1) = 21.112767268341706, (71, 2) = 100000.0, (72, 1) = 21.414558798994975, (72, 2) = 100000.0, (73, 1) = 21.7214730120603, (73, 2) = 100000.0, (74, 1) = 22.003586897487438, (74, 2) = 100000.0, (75, 1) = 22.304311163819094, (75, 2) = 100000.0, (76, 1) = 22.602746297487435, (76, 2) = 100000.0, (77, 1) = 22.92197912562814, (77, 2) = 100000.0, (78, 1) = 23.20368826733668, (78, 2) = 100000.0, (79, 1) = 23.528722136683413, (79, 2) = 100000.0, (80, 1) = 23.822040144723616, (80, 2) = 100000.0, (81, 1) = 24.112262981909545, (81, 2) = 100000.0, (82, 1) = 24.42434576683417, (82, 2) = 100000.0, (83, 1) = 24.73769099095477, (83, 2) = 100000.0, (84, 1) = 25.022788748743714, (84, 2) = 100000.0, (85, 1) = 25.325549903517587, (85, 2) = 100000.0, (86, 1) = 25.6210152, (86, 2) = 100000.0, (87, 1) = 25.94130269849246, (87, 2) = 100000.0, (88, 1) = 26.21844043417085, (88, 2) = 100000.0, (89, 1) = 26.536743198994973, (89, 2) = 100000.0, (90, 1) = 26.835964531658288, (90, 2) = 100000.0, (91, 1) = 27.13229571256281, (91, 2) = 100000.0, (92, 1) = 27.428862627135675, (92, 2) = 100000.0, (93, 1) = 27.73134210753769, (93, 2) = 100000.0, (94, 1) = 28.05196528944723, (94, 2) = 100000.0, (95, 1) = 28.345945350753766, (95, 2) = 100000.0, (96, 1) = 28.636141420100497, (96, 2) = 100000.0, (97, 1) = 28.946356242211053, (97, 2) = 100000.0, (98, 1) = 29.255895753768844, (98, 2) = 100000.0, (99, 1) = 29.53372584723618, (99, 2) = 100000.0, (100, 1) = 29.862835628140704, (100, 2) = 100000.0, (101, 1) = 30.138219431155775, (101, 2) = 100000.0, (102, 1) = 30.46031172060301, (102, 2) = 100000.0, (103, 1) = 30.767717608040197, (103, 2) = 100000.0, (104, 1) = 31.042194449246228, (104, 2) = 100000.0, (105, 1) = 31.350872363819093, (105, 2) = 100000.0, (106, 1) = 31.661596395979895, (106, 2) = 100000.0, (107, 1) = 31.970843611055276, (107, 2) = 100000.0, (108, 1) = 32.25755536582914, (108, 2) = 100000.0, (109, 1) = 32.55442878090452, (109, 2) = 100000.0, (110, 1) = 32.86145569145728, (110, 2) = 100000.0, (111, 1) = 33.16749796281407, (111, 2) = 100000.0, (112, 1) = 33.4823000562814, (112, 2) = 100000.0, (113, 1) = 33.759577911557784, (113, 2) = 100000.0, (114, 1) = 34.07172710351758, (114, 2) = 100000.0, (115, 1) = 34.38515801005025, (115, 2) = 100000.0, (116, 1) = 34.687206765829146, (116, 2) = 100000.0, (117, 1) = 34.96149597286432, (117, 2) = 100000.0, (118, 1) = 35.28765236984924, (118, 2) = 100000.0, (119, 1) = 35.563949620100495, (119, 2) = 100000.0, (120, 1) = 35.88534900603015, (120, 2) = 100000.0, (121, 1) = 36.16984192160804, (121, 2) = 100000.0, (122, 1) = 36.48197573969849, (122, 2) = 100000.0, (123, 1) = 36.77920094773869, (123, 2) = 100000.0, (124, 1) = 37.08932427135678, (124, 2) = 100000.0, (125, 1) = 37.37411429246231, (125, 2) = 100000.0, (126, 1) = 37.6812988040201, (126, 2) = 100000.0, (127, 1) = 38.00037717889447, (127, 2) = 100000.0, (128, 1) = 38.27813584221106, (128, 2) = 100000.0, (129, 1) = 38.5781228080402, (129, 2) = 100000.0, (130, 1) = 38.88803869748743, (130, 2) = 100000.0, (131, 1) = 39.191230932663316, (131, 2) = 100000.0, (132, 1) = 39.484585010050246, (132, 2) = 100000.0, (133, 1) = 39.81030469748743, (133, 2) = 100000.0, (134, 1) = 40.10297832361809, (134, 2) = 100000.0, (135, 1) = 40.41546988944723, (135, 2) = 100000.0, (136, 1) = 40.69863369346733, (136, 2) = 100000.0, (137, 1) = 41.008206524623105, (137, 2) = 100000.0, (138, 1) = 41.29949043316583, (138, 2) = 100000.0, (139, 1) = 41.60396604723618, (139, 2) = 100000.0, (140, 1) = 41.90164661306532, (140, 2) = 100000.0, (141, 1) = 42.213290577889445, (141, 2) = 100000.0, (142, 1) = 42.51344075577889, (142, 2) = 100000.0, (143, 1) = 42.8203876643216, (143, 2) = 100000.0, (144, 1) = 43.12479289748743, (144, 2) = 100000.0, (145, 1) = 43.404509692462305, (145, 2) = 100000.0, (146, 1) = 43.72509670552763, (146, 2) = 100000.0, (147, 1) = 44.01183355175879, (147, 2) = 100000.0, (148, 1) = 44.31755483517587, (148, 2) = 100000.0, (149, 1) = 44.610169112562815, (149, 2) = 100000.0, (150, 1) = 44.93507966231155, (150, 2) = 100000.0, (151, 1) = 45.21642832462311, (151, 2) = 100000.0, (152, 1) = 45.53576157286432, (152, 2) = 100000.0, (153, 1) = 45.826799161809035, (153, 2) = 100000.0, (154, 1) = 46.14514854572864, (154, 2) = 100000.0, (155, 1) = 46.41983022512562, (155, 2) = 100000.0, (156, 1) = 46.73266059497487, (156, 2) = 100000.0, (157, 1) = 47.03483928844221, (157, 2) = 100000.0, (158, 1) = 47.33682057587939, (158, 2) = 100000.0, (159, 1) = 47.63769092864321, (159, 2) = 100000.0, (160, 1) = 47.92673314673367, (160, 2) = 100000.0, (161, 1) = 48.23919543919598, (161, 2) = 100000.0, (162, 1) = 48.5369946603015, (162, 2) = 100000.0, (163, 1) = 48.85041431758794, (163, 2) = 100000.0, (164, 1) = 49.134134580904515, (164, 2) = 100000.0, (165, 1) = 49.447698584924616, (165, 2) = 100000.0, (166, 1) = 49.748038260301506, (166, 2) = 100000.0, (167, 1) = 50.047646900502514, (167, 2) = 100000.0, (168, 1) = 50.36058928643215, (168, 2) = 100000.0, (169, 1) = 50.6488206482412, (169, 2) = 100000.0, (170, 1) = 50.94400898894472, (170, 2) = 100000.0, (171, 1) = 51.26993199195979, (171, 2) = 100000.0, (172, 1) = 51.56502857487437, (172, 2) = 100000.0, (173, 1) = 51.86682010552764, (173, 2) = 100000.0, (174, 1) = 52.17373431859296, (174, 2) = 100000.0, (175, 1) = 52.4558482040201, (175, 2) = 100000.0, (176, 1) = 52.756572470351756, (176, 2) = 100000.0, (177, 1) = 53.0550076040201, (177, 2) = 100000.0, (178, 1) = 53.374240432160796, (178, 2) = 100000.0, (179, 1) = 53.65594957386934, (179, 2) = 100000.0, (180, 1) = 53.980983443216076, (180, 2) = 100000.0, (181, 1) = 54.27430145125628, (181, 2) = 100000.0, (182, 1) = 54.56452428844221, (182, 2) = 100000.0, (183, 1) = 54.876607073366834, (183, 2) = 100000.0, (184, 1) = 55.18995229748743, (184, 2) = 100000.0, (185, 1) = 55.47505005527638, (185, 2) = 100000.0, (186, 1) = 55.777811210050245, (186, 2) = 100000.0, (187, 1) = 56.07327650653266, (187, 2) = 100000.0, (188, 1) = 56.39356400502512, (188, 2) = 100000.0, (189, 1) = 56.67070174070351, (189, 2) = 100000.0, (190, 1) = 56.98900450552763, (190, 2) = 100000.0, (191, 1) = 57.288225838190954, (191, 2) = 100000.0, (192, 1) = 57.58455701909548, (192, 2) = 100000.0, (193, 1) = 57.881123933668334, (193, 2) = 100000.0, (194, 1) = 58.18360341407034, (194, 2) = 100000.0, (195, 1) = 58.504226595979894, (195, 2) = 100000.0, (196, 1) = 58.79820665728643, (196, 2) = 100000.0, (197, 1) = 59.08840272663316, (197, 2) = 100000.0, (198, 1) = 59.398617548743715, (198, 2) = 100000.0, (199, 1) = 59.708157060301495, (199, 2) = 100000.0, (200, 1) = 60.0, (200, 2) = 100000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 1000000.0, (2, 1) = .3154563015075377, (2, 2) = 1000000.0, (3, 1) = .5899331427135678, (3, 2) = 1000000.0, (4, 1) = .8986110572864321, (4, 2) = 1000000.0, (5, 1) = 1.2093350894472361, (5, 2) = 1000000.0, (6, 1) = 1.5185823045226128, (6, 2) = 1000000.0, (7, 1) = 1.8052940592964821, (7, 2) = 1000000.0, (8, 1) = 2.102167474371859, (8, 2) = 1000000.0, (9, 1) = 2.409194384924623, (9, 2) = 1000000.0, (10, 1) = 2.7152366562814065, (10, 2) = 1000000.0, (11, 1) = 3.0300387497487438, (11, 2) = 1000000.0, (12, 1) = 3.3073166050251253, (12, 2) = 1000000.0, (13, 1) = 3.6194657969849247, (13, 2) = 1000000.0, (14, 1) = 3.9328967035175877, (14, 2) = 1000000.0, (15, 1) = 4.234945459296482, (15, 2) = 1000000.0, (16, 1) = 4.509234666331658, (16, 2) = 1000000.0, (17, 1) = 4.835391063316583, (17, 2) = 1000000.0, (18, 1) = 5.111688313567838, (18, 2) = 1000000.0, (19, 1) = 5.433087699497487, (19, 2) = 1000000.0, (20, 1) = 5.717580615075376, (20, 2) = 1000000.0, (21, 1) = 6.029714433165829, (21, 2) = 1000000.0, (22, 1) = 6.32693964120603, (22, 2) = 1000000.0, (23, 1) = 6.63706296482412, (23, 2) = 1000000.0, (24, 1) = 6.9218529859296485, (24, 2) = 1000000.0, (25, 1) = 7.229037497487436, (25, 2) = 1000000.0, (26, 1) = 7.548115872361809, (26, 2) = 1000000.0, (27, 1) = 7.825874535678391, (27, 2) = 1000000.0, (28, 1) = 8.125861501507536, (28, 2) = 1000000.0, (29, 1) = 8.435777390954772, (29, 2) = 1000000.0, (30, 1) = 8.738969626130652, (30, 2) = 1000000.0, (31, 1) = 9.032323703517587, (31, 2) = 1000000.0, (32, 1) = 9.358043390954773, (32, 2) = 1000000.0, (33, 1) = 9.650717017085425, (33, 2) = 1000000.0, (34, 1) = 9.963208582914572, (34, 2) = 1000000.0, (35, 1) = 10.246372386934672, (35, 2) = 1000000.0, (36, 1) = 10.555945218090452, (36, 2) = 1000000.0, (37, 1) = 10.847229126633163, (37, 2) = 1000000.0, (38, 1) = 11.151704740703517, (38, 2) = 1000000.0, (39, 1) = 11.449385306532662, (39, 2) = 1000000.0, (40, 1) = 11.761029271356783, (40, 2) = 1000000.0, (41, 1) = 12.06117944924623, (41, 2) = 1000000.0, (42, 1) = 12.368126357788944, (42, 2) = 1000000.0, (43, 1) = 12.672531590954774, (43, 2) = 1000000.0, (44, 1) = 12.952248385929648, (44, 2) = 1000000.0, (45, 1) = 13.272835398994975, (45, 2) = 1000000.0, (46, 1) = 13.55957224522613, (46, 2) = 1000000.0, (47, 1) = 13.865293528643216, (47, 2) = 1000000.0, (48, 1) = 14.157907806030149, (48, 2) = 1000000.0, (49, 1) = 14.482818355778894, (49, 2) = 1000000.0, (50, 1) = 14.76416701809045, (50, 2) = 1000000.0, (51, 1) = 15.083500266331658, (51, 2) = 1000000.0, (52, 1) = 15.374537855276381, (52, 2) = 1000000.0, (53, 1) = 15.69288723919598, (53, 2) = 1000000.0, (54, 1) = 15.967568918592962, (54, 2) = 1000000.0, (55, 1) = 16.28039928844221, (55, 2) = 1000000.0, (56, 1) = 16.582577981909548, (56, 2) = 1000000.0, (57, 1) = 16.88455926934673, (57, 2) = 1000000.0, (58, 1) = 17.18542962211055, (58, 2) = 1000000.0, (59, 1) = 17.474471840201005, (59, 2) = 1000000.0, (60, 1) = 17.786934132663315, (60, 2) = 1000000.0, (61, 1) = 18.084733353768844, (61, 2) = 1000000.0, (62, 1) = 18.398153011055275, (62, 2) = 1000000.0, (63, 1) = 18.681873274371856, (63, 2) = 1000000.0, (64, 1) = 18.995437278391957, (64, 2) = 1000000.0, (65, 1) = 19.295776953768843, (65, 2) = 1000000.0, (66, 1) = 19.595385593969848, (66, 2) = 1000000.0, (67, 1) = 19.908327979899497, (67, 2) = 1000000.0, (68, 1) = 20.19655934170854, (68, 2) = 1000000.0, (69, 1) = 20.491747682412058, (69, 2) = 1000000.0, (70, 1) = 20.817670685427135, (70, 2) = 1000000.0, (71, 1) = 21.112767268341706, (71, 2) = 1000000.0, (72, 1) = 21.414558798994975, (72, 2) = 1000000.0, (73, 1) = 21.7214730120603, (73, 2) = 1000000.0, (74, 1) = 22.003586897487438, (74, 2) = 1000000.0, (75, 1) = 22.304311163819094, (75, 2) = 1000000.0, (76, 1) = 22.602746297487435, (76, 2) = 1000000.0, (77, 1) = 22.92197912562814, (77, 2) = 1000000.0, (78, 1) = 23.20368826733668, (78, 2) = 1000000.0, (79, 1) = 23.528722136683413, (79, 2) = 1000000.0, (80, 1) = 23.822040144723616, (80, 2) = 1000000.0, (81, 1) = 24.112262981909545, (81, 2) = 1000000.0, (82, 1) = 24.42434576683417, (82, 2) = 1000000.0, (83, 1) = 24.73769099095477, (83, 2) = 1000000.0, (84, 1) = 25.022788748743714, (84, 2) = 1000000.0, (85, 1) = 25.325549903517587, (85, 2) = 1000000.0, (86, 1) = 25.6210152, (86, 2) = 1000000.0, (87, 1) = 25.94130269849246, (87, 2) = 1000000.0, (88, 1) = 26.21844043417085, (88, 2) = 1000000.0, (89, 1) = 26.536743198994973, (89, 2) = 1000000.0, (90, 1) = 26.835964531658288, (90, 2) = 1000000.0, (91, 1) = 27.13229571256281, (91, 2) = 1000000.0, (92, 1) = 27.428862627135675, (92, 2) = 1000000.0, (93, 1) = 27.73134210753769, (93, 2) = 1000000.0, (94, 1) = 28.05196528944723, (94, 2) = 1000000.0, (95, 1) = 28.345945350753766, (95, 2) = 1000000.0, (96, 1) = 28.636141420100497, (96, 2) = 1000000.0, (97, 1) = 28.946356242211053, (97, 2) = 1000000.0, (98, 1) = 29.255895753768844, (98, 2) = 1000000.0, (99, 1) = 29.53372584723618, (99, 2) = 1000000.0, (100, 1) = 29.862835628140704, (100, 2) = 1000000.0, (101, 1) = 30.138219431155775, (101, 2) = 1000000.0, (102, 1) = 30.46031172060301, (102, 2) = 1000000.0, (103, 1) = 30.767717608040197, (103, 2) = 1000000.0, (104, 1) = 31.042194449246228, (104, 2) = 1000000.0, (105, 1) = 31.350872363819093, (105, 2) = 1000000.0, (106, 1) = 31.661596395979895, (106, 2) = 1000000.0, (107, 1) = 31.970843611055276, (107, 2) = 1000000.0, (108, 1) = 32.25755536582914, (108, 2) = 1000000.0, (109, 1) = 32.55442878090452, (109, 2) = 1000000.0, (110, 1) = 32.86145569145728, (110, 2) = 1000000.0, (111, 1) = 33.16749796281407, (111, 2) = 1000000.0, (112, 1) = 33.4823000562814, (112, 2) = 1000000.0, (113, 1) = 33.759577911557784, (113, 2) = 1000000.0, (114, 1) = 34.07172710351758, (114, 2) = 1000000.0, (115, 1) = 34.38515801005025, (115, 2) = 1000000.0, (116, 1) = 34.687206765829146, (116, 2) = 1000000.0, (117, 1) = 34.96149597286432, (117, 2) = 1000000.0, (118, 1) = 35.28765236984924, (118, 2) = 1000000.0, (119, 1) = 35.563949620100495, (119, 2) = 1000000.0, (120, 1) = 35.88534900603015, (120, 2) = 1000000.0, (121, 1) = 36.16984192160804, (121, 2) = 1000000.0, (122, 1) = 36.48197573969849, (122, 2) = 1000000.0, (123, 1) = 36.77920094773869, (123, 2) = 1000000.0, (124, 1) = 37.08932427135678, (124, 2) = 1000000.0, (125, 1) = 37.37411429246231, (125, 2) = 1000000.0, (126, 1) = 37.6812988040201, (126, 2) = 1000000.0, (127, 1) = 38.00037717889447, (127, 2) = 1000000.0, (128, 1) = 38.27813584221106, (128, 2) = 1000000.0, (129, 1) = 38.5781228080402, (129, 2) = 1000000.0, (130, 1) = 38.88803869748743, (130, 2) = 1000000.0, (131, 1) = 39.191230932663316, (131, 2) = 1000000.0, (132, 1) = 39.484585010050246, (132, 2) = 1000000.0, (133, 1) = 39.81030469748743, (133, 2) = 1000000.0, (134, 1) = 40.10297832361809, (134, 2) = 1000000.0, (135, 1) = 40.41546988944723, (135, 2) = 1000000.0, (136, 1) = 40.69863369346733, (136, 2) = 1000000.0, (137, 1) = 41.008206524623105, (137, 2) = 1000000.0, (138, 1) = 41.29949043316583, (138, 2) = 1000000.0, (139, 1) = 41.60396604723618, (139, 2) = 1000000.0, (140, 1) = 41.90164661306532, (140, 2) = 1000000.0, (141, 1) = 42.213290577889445, (141, 2) = 1000000.0, (142, 1) = 42.51344075577889, (142, 2) = 1000000.0, (143, 1) = 42.8203876643216, (143, 2) = 1000000.0, (144, 1) = 43.12479289748743, (144, 2) = 1000000.0, (145, 1) = 43.404509692462305, (145, 2) = 1000000.0, (146, 1) = 43.72509670552763, (146, 2) = 1000000.0, (147, 1) = 44.01183355175879, (147, 2) = 1000000.0, (148, 1) = 44.31755483517587, (148, 2) = 1000000.0, (149, 1) = 44.610169112562815, (149, 2) = 1000000.0, (150, 1) = 44.93507966231155, (150, 2) = 1000000.0, (151, 1) = 45.21642832462311, (151, 2) = 1000000.0, (152, 1) = 45.53576157286432, (152, 2) = 1000000.0, (153, 1) = 45.826799161809035, (153, 2) = 1000000.0, (154, 1) = 46.14514854572864, (154, 2) = 1000000.0, (155, 1) = 46.41983022512562, (155, 2) = 1000000.0, (156, 1) = 46.73266059497487, (156, 2) = 1000000.0, (157, 1) = 47.03483928844221, (157, 2) = 1000000.0, (158, 1) = 47.33682057587939, (158, 2) = 1000000.0, (159, 1) = 47.63769092864321, (159, 2) = 1000000.0, (160, 1) = 47.92673314673367, (160, 2) = 1000000.0, (161, 1) = 48.23919543919598, (161, 2) = 1000000.0, (162, 1) = 48.5369946603015, (162, 2) = 1000000.0, (163, 1) = 48.85041431758794, (163, 2) = 1000000.0, (164, 1) = 49.134134580904515, (164, 2) = 1000000.0, (165, 1) = 49.447698584924616, (165, 2) = 1000000.0, (166, 1) = 49.748038260301506, (166, 2) = 1000000.0, (167, 1) = 50.047646900502514, (167, 2) = 1000000.0, (168, 1) = 50.36058928643215, (168, 2) = 1000000.0, (169, 1) = 50.6488206482412, (169, 2) = 1000000.0, (170, 1) = 50.94400898894472, (170, 2) = 1000000.0, (171, 1) = 51.26993199195979, (171, 2) = 1000000.0, (172, 1) = 51.56502857487437, (172, 2) = 1000000.0, (173, 1) = 51.86682010552764, (173, 2) = 1000000.0, (174, 1) = 52.17373431859296, (174, 2) = 1000000.0, (175, 1) = 52.4558482040201, (175, 2) = 1000000.0, (176, 1) = 52.756572470351756, (176, 2) = 1000000.0, (177, 1) = 53.0550076040201, (177, 2) = 1000000.0, (178, 1) = 53.374240432160796, (178, 2) = 1000000.0, (179, 1) = 53.65594957386934, (179, 2) = 1000000.0, (180, 1) = 53.980983443216076, (180, 2) = 1000000.0, (181, 1) = 54.27430145125628, (181, 2) = 1000000.0, (182, 1) = 54.56452428844221, (182, 2) = 1000000.0, (183, 1) = 54.876607073366834, (183, 2) = 1000000.0, (184, 1) = 55.18995229748743, (184, 2) = 1000000.0, (185, 1) = 55.47505005527638, (185, 2) = 1000000.0, (186, 1) = 55.777811210050245, (186, 2) = 1000000.0, (187, 1) = 56.07327650653266, (187, 2) = 1000000.0, (188, 1) = 56.39356400502512, (188, 2) = 1000000.0, (189, 1) = 56.67070174070351, (189, 2) = 1000000.0, (190, 1) = 56.98900450552763, (190, 2) = 1000000.0, (191, 1) = 57.288225838190954, (191, 2) = 1000000.0, (192, 1) = 57.58455701909548, (192, 2) = 1000000.0, (193, 1) = 57.881123933668334, (193, 2) = 1000000.0, (194, 1) = 58.18360341407034, (194, 2) = 1000000.0, (195, 1) = 58.504226595979894, (195, 2) = 1000000.0, (196, 1) = 58.79820665728643, (196, 2) = 1000000.0, (197, 1) = 59.08840272663316, (197, 2) = 1000000.0, (198, 1) = 59.398617548743715, (198, 2) = 1000000.0, (199, 1) = 59.708157060301495, (199, 2) = 1000000.0, (200, 1) = 60.0, (200, 2) = 1000000.0}, datatype = float[8])), COLOUR(RGB, .90196078, .90196078, .90196078), THICKNESS(0), AXESLABELS(x, ""), VIEW(0. .. 60., DEFAULT, _ATTRIBUTE("source" = "mathdefault")))

(5)

plots:-display(a2, b2, title = "Total Deaths \n (Logarithmic scale)\n", titlefont = ["Helvetica", 18], size = [681, 400])

 

One still could think and interpret that graph at levelling off to maybe 100,000.  I sense another Dr. Fauci prediction?  

Let's take a look at the linear graph

 

a3 := plots:-listplot(USTotalDeaths[32 .. ()], tickmarks = [[seq(i-31 = USTotaldeathsdates[i], i = 32 .. nops(USTotaldeathsdates))], [20000 = "20K", 40000 = "40K", 60000 = "60K", 80000 = "80K"]], view = [default, 100 .. 80000], color = "#FF9900", thickness = 6, labels = ["", "Total Coronavirus Deaths"], labeldirections = [default, vertical])

PLOT(CURVES(Matrix(46, 2, {(1, 1) = 1.0, (1, 2) = 121.0, (2, 1) = 2.0, (2, 2) = 171.0, (3, 1) = 3.0, (3, 2) = 239.0, (4, 1) = 4.0, (4, 2) = 309.0, (5, 1) = 5.0, (5, 2) = 374.0, (6, 1) = 6.0, (6, 2) = 509.0, (7, 1) = 7.0, (7, 2) = 689.0, (8, 1) = 8.0, (8, 2) = 957.0, (9, 1) = 9.0, (9, 2) = 1260.0, (10, 1) = 10.0, (10, 2) = 1614.0, (11, 1) = 11.0, (11, 2) = 2110.0, (12, 1) = 12.0, (12, 2) = 2754.0, (13, 1) = 13.0, (13, 2) = 3251.0, (14, 1) = 14.0, (14, 2) = 4066.0, (15, 1) = 15.0, (15, 2) = 5151.0, (16, 1) = 16.0, (16, 2) = 6394.0, (17, 1) = 17.0, (17, 2) = 7576.0, (18, 1) = 18.0, (18, 2) = 8839.0, (19, 1) = 19.0, (19, 2) = 10384.0, (20, 1) = 20.0, (20, 2) = 11793.0, (21, 1) = 21.0, (21, 2) = 13298.0, (22, 1) = 22.0, (22, 2) = 15526.0, (23, 1) = 23.0, (23, 2) = 17691.0, (24, 1) = 24.0, (24, 2) = 19802.0, (25, 1) = 25.0, (25, 2) = 22038.0, (26, 1) = 26.0, (26, 2) = 24062.0, (27, 1) = 27.0, (27, 2) = 25789.0, (28, 1) = 28.0, (28, 2) = 27515.0, (29, 1) = 29.0, (29, 2) = 30081.0, (30, 1) = 30.0, (30, 2) = 32712.0, (31, 1) = 31.0, (31, 2) = 34905.0, (32, 1) = 32.0, (32, 2) = 37448.0, (33, 1) = 33.0, (33, 2) = 39331.0, (34, 1) = 34.0, (34, 2) = 40901.0, (35, 1) = 35.0, (35, 2) = 42853.0, (36, 1) = 36.0, (36, 2) = 45536.0, (37, 1) = 37.0, (37, 2) = 47894.0, (38, 1) = 38.0, (38, 2) = 50234.0, (39, 1) = 39.0, (39, 2) = 52191.0, (40, 1) = 40.0, (40, 2) = 54256.0, (41, 1) = 41.0, (41, 2) = 55412.0, (42, 1) = 42.0, (42, 2) = 56795.0, (43, 1) = 43.0, (43, 2) = 59265.0, (44, 1) = 44.0, (44, 2) = 61655.0, (45, 1) = 45.0, (45, 2) = 63856.0, (46, 1) = 46.0, (46, 2) = 65753.0}, datatype = float[8])), COLOUR(RGB, 1.00000000, .60000000, 0.), THICKNESS(6), AXESTICKS([1 = "Mar 17", 2 = "Mar 18", 3 = "Mar 19", 4 = "Mar 20", 5 = "Mar 21", 6 = "Mar 22", 7 = "Mar 23", 8 = "Mar 24", 9 = "Mar 25", 10 = "Mar 26", 11 = "Mar 27", 12 = "Mar 28", 13 = "Mar 29", 14 = "Mar 30", 15 = "Mar 31", 16 = "Apr 01", 17 = "Apr 02", 18 = "Apr 03", 19 = "Apr 04", 20 = "Apr 05", 21 = "Apr 06", 22 = "Apr 07", 23 = "Apr 08", 24 = "Apr 09", 25 = "Apr 10", 26 = "Apr 11", 27 = "Apr 12", 28 = "Apr 13", 29 = "Apr 14", 30 = "Apr 15", 31 = "Apr 16", 32 = "Apr 17", 33 = "Apr 18", 34 = "Apr 19", 35 = "Apr 20", 36 = "Apr 21", 37 = "Apr 22", 38 = "Apr 23", 39 = "Apr 24", 40 = "Apr 25", 41 = "Apr 26", 42 = "Apr 27", 43 = "Apr 28", 44 = "Apr 29", 45 = "Apr 30", 46 = "May 01"], [20000 = "20K", 40000 = "40K", 60000 = "60K", 80000 = "80K"]), AXESLABELS("", "Total Coronavirus Deaths", FONT(DEFAULT), DEFAULT, VERTICAL), VIEW(DEFAULT, 100 .. 80000))

(6)

b3 := plot([20000, 40000, 60000, 80000], x = 0 .. 60, color = "#E6E6E6", thickness = 0)

PLOT(CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 20000.0, (2, 1) = .3154563015075377, (2, 2) = 20000.0, (3, 1) = .5899331427135678, (3, 2) = 20000.0, (4, 1) = .8986110572864321, (4, 2) = 20000.0, (5, 1) = 1.2093350894472361, (5, 2) = 20000.0, (6, 1) = 1.5185823045226128, (6, 2) = 20000.0, (7, 1) = 1.8052940592964821, (7, 2) = 20000.0, (8, 1) = 2.102167474371859, (8, 2) = 20000.0, (9, 1) = 2.409194384924623, (9, 2) = 20000.0, (10, 1) = 2.7152366562814065, (10, 2) = 20000.0, (11, 1) = 3.0300387497487438, (11, 2) = 20000.0, (12, 1) = 3.3073166050251253, (12, 2) = 20000.0, (13, 1) = 3.6194657969849247, (13, 2) = 20000.0, (14, 1) = 3.9328967035175877, (14, 2) = 20000.0, (15, 1) = 4.234945459296482, (15, 2) = 20000.0, (16, 1) = 4.509234666331658, (16, 2) = 20000.0, (17, 1) = 4.835391063316583, (17, 2) = 20000.0, (18, 1) = 5.111688313567838, (18, 2) = 20000.0, (19, 1) = 5.433087699497487, (19, 2) = 20000.0, (20, 1) = 5.717580615075376, (20, 2) = 20000.0, (21, 1) = 6.029714433165829, (21, 2) = 20000.0, (22, 1) = 6.32693964120603, (22, 2) = 20000.0, (23, 1) = 6.63706296482412, (23, 2) = 20000.0, (24, 1) = 6.9218529859296485, (24, 2) = 20000.0, (25, 1) = 7.229037497487436, (25, 2) = 20000.0, (26, 1) = 7.548115872361809, (26, 2) = 20000.0, (27, 1) = 7.825874535678391, (27, 2) = 20000.0, (28, 1) = 8.125861501507536, (28, 2) = 20000.0, (29, 1) = 8.435777390954772, (29, 2) = 20000.0, (30, 1) = 8.738969626130652, (30, 2) = 20000.0, (31, 1) = 9.032323703517587, (31, 2) = 20000.0, (32, 1) = 9.358043390954773, (32, 2) = 20000.0, (33, 1) = 9.650717017085425, (33, 2) = 20000.0, (34, 1) = 9.963208582914572, (34, 2) = 20000.0, (35, 1) = 10.246372386934672, (35, 2) = 20000.0, (36, 1) = 10.555945218090452, (36, 2) = 20000.0, (37, 1) = 10.847229126633163, (37, 2) = 20000.0, (38, 1) = 11.151704740703517, (38, 2) = 20000.0, (39, 1) = 11.449385306532662, (39, 2) = 20000.0, (40, 1) = 11.761029271356783, (40, 2) = 20000.0, (41, 1) = 12.06117944924623, (41, 2) = 20000.0, (42, 1) = 12.368126357788944, (42, 2) = 20000.0, (43, 1) = 12.672531590954774, (43, 2) = 20000.0, (44, 1) = 12.952248385929648, (44, 2) = 20000.0, (45, 1) = 13.272835398994975, (45, 2) = 20000.0, (46, 1) = 13.55957224522613, (46, 2) = 20000.0, (47, 1) = 13.865293528643216, (47, 2) = 20000.0, (48, 1) = 14.157907806030149, (48, 2) = 20000.0, (49, 1) = 14.482818355778894, (49, 2) = 20000.0, (50, 1) = 14.76416701809045, (50, 2) = 20000.0, (51, 1) = 15.083500266331658, (51, 2) = 20000.0, (52, 1) = 15.374537855276381, (52, 2) = 20000.0, (53, 1) = 15.69288723919598, (53, 2) = 20000.0, (54, 1) = 15.967568918592962, (54, 2) = 20000.0, (55, 1) = 16.28039928844221, (55, 2) = 20000.0, (56, 1) = 16.582577981909548, (56, 2) = 20000.0, (57, 1) = 16.88455926934673, (57, 2) = 20000.0, (58, 1) = 17.18542962211055, (58, 2) = 20000.0, (59, 1) = 17.474471840201005, (59, 2) = 20000.0, (60, 1) = 17.786934132663315, (60, 2) = 20000.0, (61, 1) = 18.084733353768844, (61, 2) = 20000.0, (62, 1) = 18.398153011055275, (62, 2) = 20000.0, (63, 1) = 18.681873274371856, (63, 2) = 20000.0, (64, 1) = 18.995437278391957, (64, 2) = 20000.0, (65, 1) = 19.295776953768843, (65, 2) = 20000.0, (66, 1) = 19.595385593969848, (66, 2) = 20000.0, (67, 1) = 19.908327979899497, (67, 2) = 20000.0, (68, 1) = 20.19655934170854, (68, 2) = 20000.0, (69, 1) = 20.491747682412058, (69, 2) = 20000.0, (70, 1) = 20.817670685427135, (70, 2) = 20000.0, (71, 1) = 21.112767268341706, (71, 2) = 20000.0, (72, 1) = 21.414558798994975, (72, 2) = 20000.0, (73, 1) = 21.7214730120603, (73, 2) = 20000.0, (74, 1) = 22.003586897487438, (74, 2) = 20000.0, (75, 1) = 22.304311163819094, (75, 2) = 20000.0, (76, 1) = 22.602746297487435, (76, 2) = 20000.0, (77, 1) = 22.92197912562814, (77, 2) = 20000.0, (78, 1) = 23.20368826733668, (78, 2) = 20000.0, (79, 1) = 23.528722136683413, (79, 2) = 20000.0, (80, 1) = 23.822040144723616, (80, 2) = 20000.0, (81, 1) = 24.112262981909545, (81, 2) = 20000.0, (82, 1) = 24.42434576683417, (82, 2) = 20000.0, (83, 1) = 24.73769099095477, (83, 2) = 20000.0, (84, 1) = 25.022788748743714, (84, 2) = 20000.0, (85, 1) = 25.325549903517587, (85, 2) = 20000.0, (86, 1) = 25.6210152, (86, 2) = 20000.0, (87, 1) = 25.94130269849246, (87, 2) = 20000.0, (88, 1) = 26.21844043417085, (88, 2) = 20000.0, (89, 1) = 26.536743198994973, (89, 2) = 20000.0, (90, 1) = 26.835964531658288, (90, 2) = 20000.0, (91, 1) = 27.13229571256281, (91, 2) = 20000.0, (92, 1) = 27.428862627135675, (92, 2) = 20000.0, (93, 1) = 27.73134210753769, (93, 2) = 20000.0, (94, 1) = 28.05196528944723, (94, 2) = 20000.0, (95, 1) = 28.345945350753766, (95, 2) = 20000.0, (96, 1) = 28.636141420100497, (96, 2) = 20000.0, (97, 1) = 28.946356242211053, (97, 2) = 20000.0, (98, 1) = 29.255895753768844, (98, 2) = 20000.0, (99, 1) = 29.53372584723618, (99, 2) = 20000.0, (100, 1) = 29.862835628140704, (100, 2) = 20000.0, (101, 1) = 30.138219431155775, (101, 2) = 20000.0, (102, 1) = 30.46031172060301, (102, 2) = 20000.0, (103, 1) = 30.767717608040197, (103, 2) = 20000.0, (104, 1) = 31.042194449246228, (104, 2) = 20000.0, (105, 1) = 31.350872363819093, (105, 2) = 20000.0, (106, 1) = 31.661596395979895, (106, 2) = 20000.0, (107, 1) = 31.970843611055276, (107, 2) = 20000.0, (108, 1) = 32.25755536582914, (108, 2) = 20000.0, (109, 1) = 32.55442878090452, (109, 2) = 20000.0, (110, 1) = 32.86145569145728, (110, 2) = 20000.0, (111, 1) = 33.16749796281407, (111, 2) = 20000.0, (112, 1) = 33.4823000562814, (112, 2) = 20000.0, (113, 1) = 33.759577911557784, (113, 2) = 20000.0, (114, 1) = 34.07172710351758, (114, 2) = 20000.0, (115, 1) = 34.38515801005025, (115, 2) = 20000.0, (116, 1) = 34.687206765829146, (116, 2) = 20000.0, (117, 1) = 34.96149597286432, (117, 2) = 20000.0, (118, 1) = 35.28765236984924, (118, 2) = 20000.0, (119, 1) = 35.563949620100495, (119, 2) = 20000.0, (120, 1) = 35.88534900603015, (120, 2) = 20000.0, (121, 1) = 36.16984192160804, (121, 2) = 20000.0, (122, 1) = 36.48197573969849, (122, 2) = 20000.0, (123, 1) = 36.77920094773869, (123, 2) = 20000.0, (124, 1) = 37.08932427135678, (124, 2) = 20000.0, (125, 1) = 37.37411429246231, (125, 2) = 20000.0, (126, 1) = 37.6812988040201, (126, 2) = 20000.0, (127, 1) = 38.00037717889447, (127, 2) = 20000.0, (128, 1) = 38.27813584221106, (128, 2) = 20000.0, (129, 1) = 38.5781228080402, (129, 2) = 20000.0, (130, 1) = 38.88803869748743, (130, 2) = 20000.0, (131, 1) = 39.191230932663316, (131, 2) = 20000.0, (132, 1) = 39.484585010050246, (132, 2) = 20000.0, (133, 1) = 39.81030469748743, (133, 2) = 20000.0, (134, 1) = 40.10297832361809, (134, 2) = 20000.0, (135, 1) = 40.41546988944723, (135, 2) = 20000.0, (136, 1) = 40.69863369346733, (136, 2) = 20000.0, (137, 1) = 41.008206524623105, (137, 2) = 20000.0, (138, 1) = 41.29949043316583, (138, 2) = 20000.0, (139, 1) = 41.60396604723618, (139, 2) = 20000.0, (140, 1) = 41.90164661306532, (140, 2) = 20000.0, (141, 1) = 42.213290577889445, (141, 2) = 20000.0, (142, 1) = 42.51344075577889, (142, 2) = 20000.0, (143, 1) = 42.8203876643216, (143, 2) = 20000.0, (144, 1) = 43.12479289748743, (144, 2) = 20000.0, (145, 1) = 43.404509692462305, (145, 2) = 20000.0, (146, 1) = 43.72509670552763, (146, 2) = 20000.0, (147, 1) = 44.01183355175879, (147, 2) = 20000.0, (148, 1) = 44.31755483517587, (148, 2) = 20000.0, (149, 1) = 44.610169112562815, (149, 2) = 20000.0, (150, 1) = 44.93507966231155, (150, 2) = 20000.0, (151, 1) = 45.21642832462311, (151, 2) = 20000.0, (152, 1) = 45.53576157286432, (152, 2) = 20000.0, (153, 1) = 45.826799161809035, (153, 2) = 20000.0, (154, 1) = 46.14514854572864, (154, 2) = 20000.0, (155, 1) = 46.41983022512562, (155, 2) = 20000.0, (156, 1) = 46.73266059497487, (156, 2) = 20000.0, (157, 1) = 47.03483928844221, (157, 2) = 20000.0, (158, 1) = 47.33682057587939, (158, 2) = 20000.0, (159, 1) = 47.63769092864321, (159, 2) = 20000.0, (160, 1) = 47.92673314673367, (160, 2) = 20000.0, (161, 1) = 48.23919543919598, (161, 2) = 20000.0, (162, 1) = 48.5369946603015, (162, 2) = 20000.0, (163, 1) = 48.85041431758794, (163, 2) = 20000.0, (164, 1) = 49.134134580904515, (164, 2) = 20000.0, (165, 1) = 49.447698584924616, (165, 2) = 20000.0, (166, 1) = 49.748038260301506, (166, 2) = 20000.0, (167, 1) = 50.047646900502514, (167, 2) = 20000.0, (168, 1) = 50.36058928643215, (168, 2) = 20000.0, (169, 1) = 50.6488206482412, (169, 2) = 20000.0, (170, 1) = 50.94400898894472, (170, 2) = 20000.0, (171, 1) = 51.26993199195979, (171, 2) = 20000.0, (172, 1) = 51.56502857487437, (172, 2) = 20000.0, (173, 1) = 51.86682010552764, (173, 2) = 20000.0, (174, 1) = 52.17373431859296, (174, 2) = 20000.0, (175, 1) = 52.4558482040201, (175, 2) = 20000.0, (176, 1) = 52.756572470351756, (176, 2) = 20000.0, (177, 1) = 53.0550076040201, (177, 2) = 20000.0, (178, 1) = 53.374240432160796, (178, 2) = 20000.0, (179, 1) = 53.65594957386934, (179, 2) = 20000.0, (180, 1) = 53.980983443216076, (180, 2) = 20000.0, (181, 1) = 54.27430145125628, (181, 2) = 20000.0, (182, 1) = 54.56452428844221, (182, 2) = 20000.0, (183, 1) = 54.876607073366834, (183, 2) = 20000.0, (184, 1) = 55.18995229748743, (184, 2) = 20000.0, (185, 1) = 55.47505005527638, (185, 2) = 20000.0, (186, 1) = 55.777811210050245, (186, 2) = 20000.0, (187, 1) = 56.07327650653266, (187, 2) = 20000.0, (188, 1) = 56.39356400502512, (188, 2) = 20000.0, (189, 1) = 56.67070174070351, (189, 2) = 20000.0, (190, 1) = 56.98900450552763, (190, 2) = 20000.0, (191, 1) = 57.288225838190954, (191, 2) = 20000.0, (192, 1) = 57.58455701909548, (192, 2) = 20000.0, (193, 1) = 57.881123933668334, (193, 2) = 20000.0, (194, 1) = 58.18360341407034, (194, 2) = 20000.0, (195, 1) = 58.504226595979894, (195, 2) = 20000.0, (196, 1) = 58.79820665728643, (196, 2) = 20000.0, (197, 1) = 59.08840272663316, (197, 2) = 20000.0, (198, 1) = 59.398617548743715, (198, 2) = 20000.0, (199, 1) = 59.708157060301495, (199, 2) = 20000.0, (200, 1) = 60.0, (200, 2) = 20000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 40000.0, (2, 1) = .3154563015075377, (2, 2) = 40000.0, (3, 1) = .5899331427135678, (3, 2) = 40000.0, (4, 1) = .8986110572864321, (4, 2) = 40000.0, (5, 1) = 1.2093350894472361, (5, 2) = 40000.0, (6, 1) = 1.5185823045226128, (6, 2) = 40000.0, (7, 1) = 1.8052940592964821, (7, 2) = 40000.0, (8, 1) = 2.102167474371859, (8, 2) = 40000.0, (9, 1) = 2.409194384924623, (9, 2) = 40000.0, (10, 1) = 2.7152366562814065, (10, 2) = 40000.0, (11, 1) = 3.0300387497487438, (11, 2) = 40000.0, (12, 1) = 3.3073166050251253, (12, 2) = 40000.0, (13, 1) = 3.6194657969849247, (13, 2) = 40000.0, (14, 1) = 3.9328967035175877, (14, 2) = 40000.0, (15, 1) = 4.234945459296482, (15, 2) = 40000.0, (16, 1) = 4.509234666331658, (16, 2) = 40000.0, (17, 1) = 4.835391063316583, (17, 2) = 40000.0, (18, 1) = 5.111688313567838, (18, 2) = 40000.0, (19, 1) = 5.433087699497487, (19, 2) = 40000.0, (20, 1) = 5.717580615075376, (20, 2) = 40000.0, (21, 1) = 6.029714433165829, (21, 2) = 40000.0, (22, 1) = 6.32693964120603, (22, 2) = 40000.0, (23, 1) = 6.63706296482412, (23, 2) = 40000.0, (24, 1) = 6.9218529859296485, (24, 2) = 40000.0, (25, 1) = 7.229037497487436, (25, 2) = 40000.0, (26, 1) = 7.548115872361809, (26, 2) = 40000.0, (27, 1) = 7.825874535678391, (27, 2) = 40000.0, (28, 1) = 8.125861501507536, (28, 2) = 40000.0, (29, 1) = 8.435777390954772, (29, 2) = 40000.0, (30, 1) = 8.738969626130652, (30, 2) = 40000.0, (31, 1) = 9.032323703517587, (31, 2) = 40000.0, (32, 1) = 9.358043390954773, (32, 2) = 40000.0, (33, 1) = 9.650717017085425, (33, 2) = 40000.0, (34, 1) = 9.963208582914572, (34, 2) = 40000.0, (35, 1) = 10.246372386934672, (35, 2) = 40000.0, (36, 1) = 10.555945218090452, (36, 2) = 40000.0, (37, 1) = 10.847229126633163, (37, 2) = 40000.0, (38, 1) = 11.151704740703517, (38, 2) = 40000.0, (39, 1) = 11.449385306532662, (39, 2) = 40000.0, (40, 1) = 11.761029271356783, (40, 2) = 40000.0, (41, 1) = 12.06117944924623, (41, 2) = 40000.0, (42, 1) = 12.368126357788944, (42, 2) = 40000.0, (43, 1) = 12.672531590954774, (43, 2) = 40000.0, (44, 1) = 12.952248385929648, (44, 2) = 40000.0, (45, 1) = 13.272835398994975, (45, 2) = 40000.0, (46, 1) = 13.55957224522613, (46, 2) = 40000.0, (47, 1) = 13.865293528643216, (47, 2) = 40000.0, (48, 1) = 14.157907806030149, (48, 2) = 40000.0, (49, 1) = 14.482818355778894, (49, 2) = 40000.0, (50, 1) = 14.76416701809045, (50, 2) = 40000.0, (51, 1) = 15.083500266331658, (51, 2) = 40000.0, (52, 1) = 15.374537855276381, (52, 2) = 40000.0, (53, 1) = 15.69288723919598, (53, 2) = 40000.0, (54, 1) = 15.967568918592962, (54, 2) = 40000.0, (55, 1) = 16.28039928844221, (55, 2) = 40000.0, (56, 1) = 16.582577981909548, (56, 2) = 40000.0, (57, 1) = 16.88455926934673, (57, 2) = 40000.0, (58, 1) = 17.18542962211055, (58, 2) = 40000.0, (59, 1) = 17.474471840201005, (59, 2) = 40000.0, (60, 1) = 17.786934132663315, (60, 2) = 40000.0, (61, 1) = 18.084733353768844, (61, 2) = 40000.0, (62, 1) = 18.398153011055275, (62, 2) = 40000.0, (63, 1) = 18.681873274371856, (63, 2) = 40000.0, (64, 1) = 18.995437278391957, (64, 2) = 40000.0, (65, 1) = 19.295776953768843, (65, 2) = 40000.0, (66, 1) = 19.595385593969848, (66, 2) = 40000.0, (67, 1) = 19.908327979899497, (67, 2) = 40000.0, (68, 1) = 20.19655934170854, (68, 2) = 40000.0, (69, 1) = 20.491747682412058, (69, 2) = 40000.0, (70, 1) = 20.817670685427135, (70, 2) = 40000.0, (71, 1) = 21.112767268341706, (71, 2) = 40000.0, (72, 1) = 21.414558798994975, (72, 2) = 40000.0, (73, 1) = 21.7214730120603, (73, 2) = 40000.0, (74, 1) = 22.003586897487438, (74, 2) = 40000.0, (75, 1) = 22.304311163819094, (75, 2) = 40000.0, (76, 1) = 22.602746297487435, (76, 2) = 40000.0, (77, 1) = 22.92197912562814, (77, 2) = 40000.0, (78, 1) = 23.20368826733668, (78, 2) = 40000.0, (79, 1) = 23.528722136683413, (79, 2) = 40000.0, (80, 1) = 23.822040144723616, (80, 2) = 40000.0, (81, 1) = 24.112262981909545, (81, 2) = 40000.0, (82, 1) = 24.42434576683417, (82, 2) = 40000.0, (83, 1) = 24.73769099095477, (83, 2) = 40000.0, (84, 1) = 25.022788748743714, (84, 2) = 40000.0, (85, 1) = 25.325549903517587, (85, 2) = 40000.0, (86, 1) = 25.6210152, (86, 2) = 40000.0, (87, 1) = 25.94130269849246, (87, 2) = 40000.0, (88, 1) = 26.21844043417085, (88, 2) = 40000.0, (89, 1) = 26.536743198994973, (89, 2) = 40000.0, (90, 1) = 26.835964531658288, (90, 2) = 40000.0, (91, 1) = 27.13229571256281, (91, 2) = 40000.0, (92, 1) = 27.428862627135675, (92, 2) = 40000.0, (93, 1) = 27.73134210753769, (93, 2) = 40000.0, (94, 1) = 28.05196528944723, (94, 2) = 40000.0, (95, 1) = 28.345945350753766, (95, 2) = 40000.0, (96, 1) = 28.636141420100497, (96, 2) = 40000.0, (97, 1) = 28.946356242211053, (97, 2) = 40000.0, (98, 1) = 29.255895753768844, (98, 2) = 40000.0, (99, 1) = 29.53372584723618, (99, 2) = 40000.0, (100, 1) = 29.862835628140704, (100, 2) = 40000.0, (101, 1) = 30.138219431155775, (101, 2) = 40000.0, (102, 1) = 30.46031172060301, (102, 2) = 40000.0, (103, 1) = 30.767717608040197, (103, 2) = 40000.0, (104, 1) = 31.042194449246228, (104, 2) = 40000.0, (105, 1) = 31.350872363819093, (105, 2) = 40000.0, (106, 1) = 31.661596395979895, (106, 2) = 40000.0, (107, 1) = 31.970843611055276, (107, 2) = 40000.0, (108, 1) = 32.25755536582914, (108, 2) = 40000.0, (109, 1) = 32.55442878090452, (109, 2) = 40000.0, (110, 1) = 32.86145569145728, (110, 2) = 40000.0, (111, 1) = 33.16749796281407, (111, 2) = 40000.0, (112, 1) = 33.4823000562814, (112, 2) = 40000.0, (113, 1) = 33.759577911557784, (113, 2) = 40000.0, (114, 1) = 34.07172710351758, (114, 2) = 40000.0, (115, 1) = 34.38515801005025, (115, 2) = 40000.0, (116, 1) = 34.687206765829146, (116, 2) = 40000.0, (117, 1) = 34.96149597286432, (117, 2) = 40000.0, (118, 1) = 35.28765236984924, (118, 2) = 40000.0, (119, 1) = 35.563949620100495, (119, 2) = 40000.0, (120, 1) = 35.88534900603015, (120, 2) = 40000.0, (121, 1) = 36.16984192160804, (121, 2) = 40000.0, (122, 1) = 36.48197573969849, (122, 2) = 40000.0, (123, 1) = 36.77920094773869, (123, 2) = 40000.0, (124, 1) = 37.08932427135678, (124, 2) = 40000.0, (125, 1) = 37.37411429246231, (125, 2) = 40000.0, (126, 1) = 37.6812988040201, (126, 2) = 40000.0, (127, 1) = 38.00037717889447, (127, 2) = 40000.0, (128, 1) = 38.27813584221106, (128, 2) = 40000.0, (129, 1) = 38.5781228080402, (129, 2) = 40000.0, (130, 1) = 38.88803869748743, (130, 2) = 40000.0, (131, 1) = 39.191230932663316, (131, 2) = 40000.0, (132, 1) = 39.484585010050246, (132, 2) = 40000.0, (133, 1) = 39.81030469748743, (133, 2) = 40000.0, (134, 1) = 40.10297832361809, (134, 2) = 40000.0, (135, 1) = 40.41546988944723, (135, 2) = 40000.0, (136, 1) = 40.69863369346733, (136, 2) = 40000.0, (137, 1) = 41.008206524623105, (137, 2) = 40000.0, (138, 1) = 41.29949043316583, (138, 2) = 40000.0, (139, 1) = 41.60396604723618, (139, 2) = 40000.0, (140, 1) = 41.90164661306532, (140, 2) = 40000.0, (141, 1) = 42.213290577889445, (141, 2) = 40000.0, (142, 1) = 42.51344075577889, (142, 2) = 40000.0, (143, 1) = 42.8203876643216, (143, 2) = 40000.0, (144, 1) = 43.12479289748743, (144, 2) = 40000.0, (145, 1) = 43.404509692462305, (145, 2) = 40000.0, (146, 1) = 43.72509670552763, (146, 2) = 40000.0, (147, 1) = 44.01183355175879, (147, 2) = 40000.0, (148, 1) = 44.31755483517587, (148, 2) = 40000.0, (149, 1) = 44.610169112562815, (149, 2) = 40000.0, (150, 1) = 44.93507966231155, (150, 2) = 40000.0, (151, 1) = 45.21642832462311, (151, 2) = 40000.0, (152, 1) = 45.53576157286432, (152, 2) = 40000.0, (153, 1) = 45.826799161809035, (153, 2) = 40000.0, (154, 1) = 46.14514854572864, (154, 2) = 40000.0, (155, 1) = 46.41983022512562, (155, 2) = 40000.0, (156, 1) = 46.73266059497487, (156, 2) = 40000.0, (157, 1) = 47.03483928844221, (157, 2) = 40000.0, (158, 1) = 47.33682057587939, (158, 2) = 40000.0, (159, 1) = 47.63769092864321, (159, 2) = 40000.0, (160, 1) = 47.92673314673367, (160, 2) = 40000.0, (161, 1) = 48.23919543919598, (161, 2) = 40000.0, (162, 1) = 48.5369946603015, (162, 2) = 40000.0, (163, 1) = 48.85041431758794, (163, 2) = 40000.0, (164, 1) = 49.134134580904515, (164, 2) = 40000.0, (165, 1) = 49.447698584924616, (165, 2) = 40000.0, (166, 1) = 49.748038260301506, (166, 2) = 40000.0, (167, 1) = 50.047646900502514, (167, 2) = 40000.0, (168, 1) = 50.36058928643215, (168, 2) = 40000.0, (169, 1) = 50.6488206482412, (169, 2) = 40000.0, (170, 1) = 50.94400898894472, (170, 2) = 40000.0, (171, 1) = 51.26993199195979, (171, 2) = 40000.0, (172, 1) = 51.56502857487437, (172, 2) = 40000.0, (173, 1) = 51.86682010552764, (173, 2) = 40000.0, (174, 1) = 52.17373431859296, (174, 2) = 40000.0, (175, 1) = 52.4558482040201, (175, 2) = 40000.0, (176, 1) = 52.756572470351756, (176, 2) = 40000.0, (177, 1) = 53.0550076040201, (177, 2) = 40000.0, (178, 1) = 53.374240432160796, (178, 2) = 40000.0, (179, 1) = 53.65594957386934, (179, 2) = 40000.0, (180, 1) = 53.980983443216076, (180, 2) = 40000.0, (181, 1) = 54.27430145125628, (181, 2) = 40000.0, (182, 1) = 54.56452428844221, (182, 2) = 40000.0, (183, 1) = 54.876607073366834, (183, 2) = 40000.0, (184, 1) = 55.18995229748743, (184, 2) = 40000.0, (185, 1) = 55.47505005527638, (185, 2) = 40000.0, (186, 1) = 55.777811210050245, (186, 2) = 40000.0, (187, 1) = 56.07327650653266, (187, 2) = 40000.0, (188, 1) = 56.39356400502512, (188, 2) = 40000.0, (189, 1) = 56.67070174070351, (189, 2) = 40000.0, (190, 1) = 56.98900450552763, (190, 2) = 40000.0, (191, 1) = 57.288225838190954, (191, 2) = 40000.0, (192, 1) = 57.58455701909548, (192, 2) = 40000.0, (193, 1) = 57.881123933668334, (193, 2) = 40000.0, (194, 1) = 58.18360341407034, (194, 2) = 40000.0, (195, 1) = 58.504226595979894, (195, 2) = 40000.0, (196, 1) = 58.79820665728643, (196, 2) = 40000.0, (197, 1) = 59.08840272663316, (197, 2) = 40000.0, (198, 1) = 59.398617548743715, (198, 2) = 40000.0, (199, 1) = 59.708157060301495, (199, 2) = 40000.0, (200, 1) = 60.0, (200, 2) = 40000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 60000.0, (2, 1) = .3154563015075377, (2, 2) = 60000.0, (3, 1) = .5899331427135678, (3, 2) = 60000.0, (4, 1) = .8986110572864321, (4, 2) = 60000.0, (5, 1) = 1.2093350894472361, (5, 2) = 60000.0, (6, 1) = 1.5185823045226128, (6, 2) = 60000.0, (7, 1) = 1.8052940592964821, (7, 2) = 60000.0, (8, 1) = 2.102167474371859, (8, 2) = 60000.0, (9, 1) = 2.409194384924623, (9, 2) = 60000.0, (10, 1) = 2.7152366562814065, (10, 2) = 60000.0, (11, 1) = 3.0300387497487438, (11, 2) = 60000.0, (12, 1) = 3.3073166050251253, (12, 2) = 60000.0, (13, 1) = 3.6194657969849247, (13, 2) = 60000.0, (14, 1) = 3.9328967035175877, (14, 2) = 60000.0, (15, 1) = 4.234945459296482, (15, 2) = 60000.0, (16, 1) = 4.509234666331658, (16, 2) = 60000.0, (17, 1) = 4.835391063316583, (17, 2) = 60000.0, (18, 1) = 5.111688313567838, (18, 2) = 60000.0, (19, 1) = 5.433087699497487, (19, 2) = 60000.0, (20, 1) = 5.717580615075376, (20, 2) = 60000.0, (21, 1) = 6.029714433165829, (21, 2) = 60000.0, (22, 1) = 6.32693964120603, (22, 2) = 60000.0, (23, 1) = 6.63706296482412, (23, 2) = 60000.0, (24, 1) = 6.9218529859296485, (24, 2) = 60000.0, (25, 1) = 7.229037497487436, (25, 2) = 60000.0, (26, 1) = 7.548115872361809, (26, 2) = 60000.0, (27, 1) = 7.825874535678391, (27, 2) = 60000.0, (28, 1) = 8.125861501507536, (28, 2) = 60000.0, (29, 1) = 8.435777390954772, (29, 2) = 60000.0, (30, 1) = 8.738969626130652, (30, 2) = 60000.0, (31, 1) = 9.032323703517587, (31, 2) = 60000.0, (32, 1) = 9.358043390954773, (32, 2) = 60000.0, (33, 1) = 9.650717017085425, (33, 2) = 60000.0, (34, 1) = 9.963208582914572, (34, 2) = 60000.0, (35, 1) = 10.246372386934672, (35, 2) = 60000.0, (36, 1) = 10.555945218090452, (36, 2) = 60000.0, (37, 1) = 10.847229126633163, (37, 2) = 60000.0, (38, 1) = 11.151704740703517, (38, 2) = 60000.0, (39, 1) = 11.449385306532662, (39, 2) = 60000.0, (40, 1) = 11.761029271356783, (40, 2) = 60000.0, (41, 1) = 12.06117944924623, (41, 2) = 60000.0, (42, 1) = 12.368126357788944, (42, 2) = 60000.0, (43, 1) = 12.672531590954774, (43, 2) = 60000.0, (44, 1) = 12.952248385929648, (44, 2) = 60000.0, (45, 1) = 13.272835398994975, (45, 2) = 60000.0, (46, 1) = 13.55957224522613, (46, 2) = 60000.0, (47, 1) = 13.865293528643216, (47, 2) = 60000.0, (48, 1) = 14.157907806030149, (48, 2) = 60000.0, (49, 1) = 14.482818355778894, (49, 2) = 60000.0, (50, 1) = 14.76416701809045, (50, 2) = 60000.0, (51, 1) = 15.083500266331658, (51, 2) = 60000.0, (52, 1) = 15.374537855276381, (52, 2) = 60000.0, (53, 1) = 15.69288723919598, (53, 2) = 60000.0, (54, 1) = 15.967568918592962, (54, 2) = 60000.0, (55, 1) = 16.28039928844221, (55, 2) = 60000.0, (56, 1) = 16.582577981909548, (56, 2) = 60000.0, (57, 1) = 16.88455926934673, (57, 2) = 60000.0, (58, 1) = 17.18542962211055, (58, 2) = 60000.0, (59, 1) = 17.474471840201005, (59, 2) = 60000.0, (60, 1) = 17.786934132663315, (60, 2) = 60000.0, (61, 1) = 18.084733353768844, (61, 2) = 60000.0, (62, 1) = 18.398153011055275, (62, 2) = 60000.0, (63, 1) = 18.681873274371856, (63, 2) = 60000.0, (64, 1) = 18.995437278391957, (64, 2) = 60000.0, (65, 1) = 19.295776953768843, (65, 2) = 60000.0, (66, 1) = 19.595385593969848, (66, 2) = 60000.0, (67, 1) = 19.908327979899497, (67, 2) = 60000.0, (68, 1) = 20.19655934170854, (68, 2) = 60000.0, (69, 1) = 20.491747682412058, (69, 2) = 60000.0, (70, 1) = 20.817670685427135, (70, 2) = 60000.0, (71, 1) = 21.112767268341706, (71, 2) = 60000.0, (72, 1) = 21.414558798994975, (72, 2) = 60000.0, (73, 1) = 21.7214730120603, (73, 2) = 60000.0, (74, 1) = 22.003586897487438, (74, 2) = 60000.0, (75, 1) = 22.304311163819094, (75, 2) = 60000.0, (76, 1) = 22.602746297487435, (76, 2) = 60000.0, (77, 1) = 22.92197912562814, (77, 2) = 60000.0, (78, 1) = 23.20368826733668, (78, 2) = 60000.0, (79, 1) = 23.528722136683413, (79, 2) = 60000.0, (80, 1) = 23.822040144723616, (80, 2) = 60000.0, (81, 1) = 24.112262981909545, (81, 2) = 60000.0, (82, 1) = 24.42434576683417, (82, 2) = 60000.0, (83, 1) = 24.73769099095477, (83, 2) = 60000.0, (84, 1) = 25.022788748743714, (84, 2) = 60000.0, (85, 1) = 25.325549903517587, (85, 2) = 60000.0, (86, 1) = 25.6210152, (86, 2) = 60000.0, (87, 1) = 25.94130269849246, (87, 2) = 60000.0, (88, 1) = 26.21844043417085, (88, 2) = 60000.0, (89, 1) = 26.536743198994973, (89, 2) = 60000.0, (90, 1) = 26.835964531658288, (90, 2) = 60000.0, (91, 1) = 27.13229571256281, (91, 2) = 60000.0, (92, 1) = 27.428862627135675, (92, 2) = 60000.0, (93, 1) = 27.73134210753769, (93, 2) = 60000.0, (94, 1) = 28.05196528944723, (94, 2) = 60000.0, (95, 1) = 28.345945350753766, (95, 2) = 60000.0, (96, 1) = 28.636141420100497, (96, 2) = 60000.0, (97, 1) = 28.946356242211053, (97, 2) = 60000.0, (98, 1) = 29.255895753768844, (98, 2) = 60000.0, (99, 1) = 29.53372584723618, (99, 2) = 60000.0, (100, 1) = 29.862835628140704, (100, 2) = 60000.0, (101, 1) = 30.138219431155775, (101, 2) = 60000.0, (102, 1) = 30.46031172060301, (102, 2) = 60000.0, (103, 1) = 30.767717608040197, (103, 2) = 60000.0, (104, 1) = 31.042194449246228, (104, 2) = 60000.0, (105, 1) = 31.350872363819093, (105, 2) = 60000.0, (106, 1) = 31.661596395979895, (106, 2) = 60000.0, (107, 1) = 31.970843611055276, (107, 2) = 60000.0, (108, 1) = 32.25755536582914, (108, 2) = 60000.0, (109, 1) = 32.55442878090452, (109, 2) = 60000.0, (110, 1) = 32.86145569145728, (110, 2) = 60000.0, (111, 1) = 33.16749796281407, (111, 2) = 60000.0, (112, 1) = 33.4823000562814, (112, 2) = 60000.0, (113, 1) = 33.759577911557784, (113, 2) = 60000.0, (114, 1) = 34.07172710351758, (114, 2) = 60000.0, (115, 1) = 34.38515801005025, (115, 2) = 60000.0, (116, 1) = 34.687206765829146, (116, 2) = 60000.0, (117, 1) = 34.96149597286432, (117, 2) = 60000.0, (118, 1) = 35.28765236984924, (118, 2) = 60000.0, (119, 1) = 35.563949620100495, (119, 2) = 60000.0, (120, 1) = 35.88534900603015, (120, 2) = 60000.0, (121, 1) = 36.16984192160804, (121, 2) = 60000.0, (122, 1) = 36.48197573969849, (122, 2) = 60000.0, (123, 1) = 36.77920094773869, (123, 2) = 60000.0, (124, 1) = 37.08932427135678, (124, 2) = 60000.0, (125, 1) = 37.37411429246231, (125, 2) = 60000.0, (126, 1) = 37.6812988040201, (126, 2) = 60000.0, (127, 1) = 38.00037717889447, (127, 2) = 60000.0, (128, 1) = 38.27813584221106, (128, 2) = 60000.0, (129, 1) = 38.5781228080402, (129, 2) = 60000.0, (130, 1) = 38.88803869748743, (130, 2) = 60000.0, (131, 1) = 39.191230932663316, (131, 2) = 60000.0, (132, 1) = 39.484585010050246, (132, 2) = 60000.0, (133, 1) = 39.81030469748743, (133, 2) = 60000.0, (134, 1) = 40.10297832361809, (134, 2) = 60000.0, (135, 1) = 40.41546988944723, (135, 2) = 60000.0, (136, 1) = 40.69863369346733, (136, 2) = 60000.0, (137, 1) = 41.008206524623105, (137, 2) = 60000.0, (138, 1) = 41.29949043316583, (138, 2) = 60000.0, (139, 1) = 41.60396604723618, (139, 2) = 60000.0, (140, 1) = 41.90164661306532, (140, 2) = 60000.0, (141, 1) = 42.213290577889445, (141, 2) = 60000.0, (142, 1) = 42.51344075577889, (142, 2) = 60000.0, (143, 1) = 42.8203876643216, (143, 2) = 60000.0, (144, 1) = 43.12479289748743, (144, 2) = 60000.0, (145, 1) = 43.404509692462305, (145, 2) = 60000.0, (146, 1) = 43.72509670552763, (146, 2) = 60000.0, (147, 1) = 44.01183355175879, (147, 2) = 60000.0, (148, 1) = 44.31755483517587, (148, 2) = 60000.0, (149, 1) = 44.610169112562815, (149, 2) = 60000.0, (150, 1) = 44.93507966231155, (150, 2) = 60000.0, (151, 1) = 45.21642832462311, (151, 2) = 60000.0, (152, 1) = 45.53576157286432, (152, 2) = 60000.0, (153, 1) = 45.826799161809035, (153, 2) = 60000.0, (154, 1) = 46.14514854572864, (154, 2) = 60000.0, (155, 1) = 46.41983022512562, (155, 2) = 60000.0, (156, 1) = 46.73266059497487, (156, 2) = 60000.0, (157, 1) = 47.03483928844221, (157, 2) = 60000.0, (158, 1) = 47.33682057587939, (158, 2) = 60000.0, (159, 1) = 47.63769092864321, (159, 2) = 60000.0, (160, 1) = 47.92673314673367, (160, 2) = 60000.0, (161, 1) = 48.23919543919598, (161, 2) = 60000.0, (162, 1) = 48.5369946603015, (162, 2) = 60000.0, (163, 1) = 48.85041431758794, (163, 2) = 60000.0, (164, 1) = 49.134134580904515, (164, 2) = 60000.0, (165, 1) = 49.447698584924616, (165, 2) = 60000.0, (166, 1) = 49.748038260301506, (166, 2) = 60000.0, (167, 1) = 50.047646900502514, (167, 2) = 60000.0, (168, 1) = 50.36058928643215, (168, 2) = 60000.0, (169, 1) = 50.6488206482412, (169, 2) = 60000.0, (170, 1) = 50.94400898894472, (170, 2) = 60000.0, (171, 1) = 51.26993199195979, (171, 2) = 60000.0, (172, 1) = 51.56502857487437, (172, 2) = 60000.0, (173, 1) = 51.86682010552764, (173, 2) = 60000.0, (174, 1) = 52.17373431859296, (174, 2) = 60000.0, (175, 1) = 52.4558482040201, (175, 2) = 60000.0, (176, 1) = 52.756572470351756, (176, 2) = 60000.0, (177, 1) = 53.0550076040201, (177, 2) = 60000.0, (178, 1) = 53.374240432160796, (178, 2) = 60000.0, (179, 1) = 53.65594957386934, (179, 2) = 60000.0, (180, 1) = 53.980983443216076, (180, 2) = 60000.0, (181, 1) = 54.27430145125628, (181, 2) = 60000.0, (182, 1) = 54.56452428844221, (182, 2) = 60000.0, (183, 1) = 54.876607073366834, (183, 2) = 60000.0, (184, 1) = 55.18995229748743, (184, 2) = 60000.0, (185, 1) = 55.47505005527638, (185, 2) = 60000.0, (186, 1) = 55.777811210050245, (186, 2) = 60000.0, (187, 1) = 56.07327650653266, (187, 2) = 60000.0, (188, 1) = 56.39356400502512, (188, 2) = 60000.0, (189, 1) = 56.67070174070351, (189, 2) = 60000.0, (190, 1) = 56.98900450552763, (190, 2) = 60000.0, (191, 1) = 57.288225838190954, (191, 2) = 60000.0, (192, 1) = 57.58455701909548, (192, 2) = 60000.0, (193, 1) = 57.881123933668334, (193, 2) = 60000.0, (194, 1) = 58.18360341407034, (194, 2) = 60000.0, (195, 1) = 58.504226595979894, (195, 2) = 60000.0, (196, 1) = 58.79820665728643, (196, 2) = 60000.0, (197, 1) = 59.08840272663316, (197, 2) = 60000.0, (198, 1) = 59.398617548743715, (198, 2) = 60000.0, (199, 1) = 59.708157060301495, (199, 2) = 60000.0, (200, 1) = 60.0, (200, 2) = 60000.0}, datatype = float[8])), CURVES(Matrix(200, 2, {(1, 1) = .0, (1, 2) = 80000.0, (2, 1) = .3154563015075377, (2, 2) = 80000.0, (3, 1) = .5899331427135678, (3, 2) = 80000.0, (4, 1) = .8986110572864321, (4, 2) = 80000.0, (5, 1) = 1.2093350894472361, (5, 2) = 80000.0, (6, 1) = 1.5185823045226128, (6, 2) = 80000.0, (7, 1) = 1.8052940592964821, (7, 2) = 80000.0, (8, 1) = 2.102167474371859, (8, 2) = 80000.0, (9, 1) = 2.409194384924623, (9, 2) = 80000.0, (10, 1) = 2.7152366562814065, (10, 2) = 80000.0, (11, 1) = 3.0300387497487438, (11, 2) = 80000.0, (12, 1) = 3.3073166050251253, (12, 2) = 80000.0, (13, 1) = 3.6194657969849247, (13, 2) = 80000.0, (14, 1) = 3.9328967035175877, (14, 2) = 80000.0, (15, 1) = 4.234945459296482, (15, 2) = 80000.0, (16, 1) = 4.509234666331658, (16, 2) = 80000.0, (17, 1) = 4.835391063316583, (17, 2) = 80000.0, (18, 1) = 5.111688313567838, (18, 2) = 80000.0, (19, 1) = 5.433087699497487, (19, 2) = 80000.0, (20, 1) = 5.717580615075376, (20, 2) = 80000.0, (21, 1) = 6.029714433165829, (21, 2) = 80000.0, (22, 1) = 6.32693964120603, (22, 2) = 80000.0, (23, 1) = 6.63706296482412, (23, 2) = 80000.0, (24, 1) = 6.9218529859296485, (24, 2) = 80000.0, (25, 1) = 7.229037497487436, (25, 2) = 80000.0, (26, 1) = 7.548115872361809, (26, 2) = 80000.0, (27, 1) = 7.825874535678391, (27, 2) = 80000.0, (28, 1) = 8.125861501507536, (28, 2) = 80000.0, (29, 1) = 8.435777390954772, (29, 2) = 80000.0, (30, 1) = 8.738969626130652, (30, 2) = 80000.0, (31, 1) = 9.032323703517587, (31, 2) = 80000.0, (32, 1) = 9.358043390954773, (32, 2) = 80000.0, (33, 1) = 9.650717017085425, (33, 2) = 80000.0, (34, 1) = 9.963208582914572, (34, 2) = 80000.0, (35, 1) = 10.246372386934672, (35, 2) = 80000.0, (36, 1) = 10.555945218090452, (36, 2) = 80000.0, (37, 1) = 10.847229126633163, (37, 2) = 80000.0, (38, 1) = 11.151704740703517, (38, 2) = 80000.0, (39, 1) = 11.449385306532662, (39, 2) = 80000.0, (40, 1) = 11.761029271356783, (40, 2) = 80000.0, (41, 1) = 12.06117944924623, (41, 2) = 80000.0, (42, 1) = 12.368126357788944, (42, 2) = 80000.0, (43, 1) = 12.672531590954774, (43, 2) = 80000.0, (44, 1) = 12.952248385929648, (44, 2) = 80000.0, (45, 1) = 13.272835398994975, (45, 2) = 80000.0, (46, 1) = 13.55957224522613, (46, 2) = 80000.0, (47, 1) = 13.865293528643216, (47, 2) = 80000.0, (48, 1) = 14.157907806030149, (48, 2) = 80000.0, (49, 1) = 14.482818355778894, (49, 2) = 80000.0, (50, 1) = 14.76416701809045, (50, 2) = 80000.0, (51, 1) = 15.083500266331658, (51, 2) = 80000.0, (52, 1) = 15.374537855276381, (52, 2) = 80000.0, (53, 1) = 15.69288723919598, (53, 2) = 80000.0, (54, 1) = 15.967568918592962, (54, 2) = 80000.0, (55, 1) = 16.28039928844221, (55, 2) = 80000.0, (56, 1) = 16.582577981909548, (56, 2) = 80000.0, (57, 1) = 16.88455926934673, (57, 2) = 80000.0, (58, 1) = 17.18542962211055, (58, 2) = 80000.0, (59, 1) = 17.474471840201005, (59, 2) = 80000.0, (60, 1) = 17.786934132663315, (60, 2) = 80000.0, (61, 1) = 18.084733353768844, (61, 2) = 80000.0, (62, 1) = 18.398153011055275, (62, 2) = 80000.0, (63, 1) = 18.681873274371856, (63, 2) = 80000.0, (64, 1) = 18.995437278391957, (64, 2) = 80000.0, (65, 1) = 19.295776953768843, (65, 2) = 80000.0, (66, 1) = 19.595385593969848, (66, 2) = 80000.0, (67, 1) = 19.908327979899497, (67, 2) = 80000.0, (68, 1) = 20.19655934170854, (68, 2) = 80000.0, (69, 1) = 20.491747682412058, (69, 2) = 80000.0, (70, 1) = 20.817670685427135, (70, 2) = 80000.0, (71, 1) = 21.112767268341706, (71, 2) = 80000.0, (72, 1) = 21.414558798994975, (72, 2) = 80000.0, (73, 1) = 21.7214730120603, (73, 2) = 80000.0, (74, 1) = 22.003586897487438, (74, 2) = 80000.0, (75, 1) = 22.304311163819094, (75, 2) = 80000.0, (76, 1) = 22.602746297487435, (76, 2) = 80000.0, (77, 1) = 22.92197912562814, (77, 2) = 80000.0, (78, 1) = 23.20368826733668, (78, 2) = 80000.0, (79, 1) = 23.528722136683413, (79, 2) = 80000.0, (80, 1) = 23.822040144723616, (80, 2) = 80000.0, (81, 1) = 24.112262981909545, (81, 2) = 80000.0, (82, 1) = 24.42434576683417, (82, 2) = 80000.0, (83, 1) = 24.73769099095477, (83, 2) = 80000.0, (84, 1) = 25.022788748743714, (84, 2) = 80000.0, (85, 1) = 25.325549903517587, (85, 2) = 80000.0, (86, 1) = 25.6210152, (86, 2) = 80000.0, (87, 1) = 25.94130269849246, (87, 2) = 80000.0, (88, 1) = 26.21844043417085, (88, 2) = 80000.0, (89, 1) = 26.536743198994973, (89, 2) = 80000.0, (90, 1) = 26.835964531658288, (90, 2) = 80000.0, (91, 1) = 27.13229571256281, (91, 2) = 80000.0, (92, 1) = 27.428862627135675, (92, 2) = 80000.0, (93, 1) = 27.73134210753769, (93, 2) = 80000.0, (94, 1) = 28.05196528944723, (94, 2) = 80000.0, (95, 1) = 28.345945350753766, (95, 2) = 80000.0, (96, 1) = 28.636141420100497, (96, 2) = 80000.0, (97, 1) = 28.946356242211053, (97, 2) = 80000.0, (98, 1) = 29.255895753768844, (98, 2) = 80000.0, (99, 1) = 29.53372584723618, (99, 2) = 80000.0, (100, 1) = 29.862835628140704, (100, 2) = 80000.0, (101, 1) = 30.138219431155775, (101, 2) = 80000.0, (102, 1) = 30.46031172060301, (102, 2) = 80000.0, (103, 1) = 30.767717608040197, (103, 2) = 80000.0, (104, 1) = 31.042194449246228, (104, 2) = 80000.0, (105, 1) = 31.350872363819093, (105, 2) = 80000.0, (106, 1) = 31.661596395979895, (106, 2) = 80000.0, (107, 1) = 31.970843611055276, (107, 2) = 80000.0, (108, 1) = 32.25755536582914, (108, 2) = 80000.0, (109, 1) = 32.55442878090452, (109, 2) = 80000.0, (110, 1) = 32.86145569145728, (110, 2) = 80000.0, (111, 1) = 33.16749796281407, (111, 2) = 80000.0, (112, 1) = 33.4823000562814, (112, 2) = 80000.0, (113, 1) = 33.759577911557784, (113, 2) = 80000.0, (114, 1) = 34.07172710351758, (114, 2) = 80000.0, (115, 1) = 34.38515801005025, (115, 2) = 80000.0, (116, 1) = 34.687206765829146, (116, 2) = 80000.0, (117, 1) = 34.96149597286432, (117, 2) = 80000.0, (118, 1) = 35.28765236984924, (118, 2) = 80000.0, (119, 1) = 35.563949620100495, (119, 2) = 80000.0, (120, 1) = 35.88534900603015, (120, 2) = 80000.0, (121, 1) = 36.16984192160804, (121, 2) = 80000.0, (122, 1) = 36.48197573969849, (122, 2) = 80000.0, (123, 1) = 36.77920094773869, (123, 2) = 80000.0, (124, 1) = 37.08932427135678, (124, 2) = 80000.0, (125, 1) = 37.37411429246231, (125, 2) = 80000.0, (126, 1) = 37.6812988040201, (126, 2) = 80000.0, (127, 1) = 38.00037717889447, (127, 2) = 80000.0, (128, 1) = 38.27813584221106, (128, 2) = 80000.0, (129, 1) = 38.5781228080402, (129, 2) = 80000.0, (130, 1) = 38.88803869748743, (130, 2) = 80000.0, (131, 1) = 39.191230932663316, (131, 2) = 80000.0, (132, 1) = 39.484585010050246, (132, 2) = 80000.0, (133, 1) = 39.81030469748743, (133, 2) = 80000.0, (134, 1) = 40.10297832361809, (134, 2) = 80000.0, (135, 1) = 40.41546988944723, (135, 2) = 80000.0, (136, 1) = 40.69863369346733, (136, 2) = 80000.0, (137, 1) = 41.008206524623105, (137, 2) = 80000.0, (138, 1) = 41.29949043316583, (138, 2) = 80000.0, (139, 1) = 41.60396604723618, (139, 2) = 80000.0, (140, 1) = 41.90164661306532, (140, 2) = 80000.0, (141, 1) = 42.213290577889445, (141, 2) = 80000.0, (142, 1) = 42.51344075577889, (142, 2) = 80000.0, (143, 1) = 42.8203876643216, (143, 2) = 80000.0, (144, 1) = 43.12479289748743, (144, 2) = 80000.0, (145, 1) = 43.404509692462305, (145, 2) = 80000.0, (146, 1) = 43.72509670552763, (146, 2) = 80000.0, (147, 1) = 44.01183355175879, (147, 2) = 80000.0, (148, 1) = 44.31755483517587, (148, 2) = 80000.0, (149, 1) = 44.610169112562815, (149, 2) = 80000.0, (150, 1) = 44.93507966231155, (150, 2) = 80000.0, (151, 1) = 45.21642832462311, (151, 2) = 80000.0, (152, 1) = 45.53576157286432, (152, 2) = 80000.0, (153, 1) = 45.826799161809035, (153, 2) = 80000.0, (154, 1) = 46.14514854572864, (154, 2) = 80000.0, (155, 1) = 46.41983022512562, (155, 2) = 80000.0, (156, 1) = 46.73266059497487, (156, 2) = 80000.0, (157, 1) = 47.03483928844221, (157, 2) = 80000.0, (158, 1) = 47.33682057587939, (158, 2) = 80000.0, (159, 1) = 47.63769092864321, (159, 2) = 80000.0, (160, 1) = 47.92673314673367, (160, 2) = 80000.0, (161, 1) = 48.23919543919598, (161, 2) = 80000.0, (162, 1) = 48.5369946603015, (162, 2) = 80000.0, (163, 1) = 48.85041431758794, (163, 2) = 80000.0, (164, 1) = 49.134134580904515, (164, 2) = 80000.0, (165, 1) = 49.447698584924616, (165, 2) = 80000.0, (166, 1) = 49.748038260301506, (166, 2) = 80000.0, (167, 1) = 50.047646900502514, (167, 2) = 80000.0, (168, 1) = 50.36058928643215, (168, 2) = 80000.0, (169, 1) = 50.6488206482412, (169, 2) = 80000.0, (170, 1) = 50.94400898894472, (170, 2) = 80000.0, (171, 1) = 51.26993199195979, (171, 2) = 80000.0, (172, 1) = 51.56502857487437, (172, 2) = 80000.0, (173, 1) = 51.86682010552764, (173, 2) = 80000.0, (174, 1) = 52.17373431859296, (174, 2) = 80000.0, (175, 1) = 52.4558482040201, (175, 2) = 80000.0, (176, 1) = 52.756572470351756, (176, 2) = 80000.0, (177, 1) = 53.0550076040201, (177, 2) = 80000.0, (178, 1) = 53.374240432160796, (178, 2) = 80000.0, (179, 1) = 53.65594957386934, (179, 2) = 80000.0, (180, 1) = 53.980983443216076, (180, 2) = 80000.0, (181, 1) = 54.27430145125628, (181, 2) = 80000.0, (182, 1) = 54.56452428844221, (182, 2) = 80000.0, (183, 1) = 54.876607073366834, (183, 2) = 80000.0, (184, 1) = 55.18995229748743, (184, 2) = 80000.0, (185, 1) = 55.47505005527638, (185, 2) = 80000.0, (186, 1) = 55.777811210050245, (186, 2) = 80000.0, (187, 1) = 56.07327650653266, (187, 2) = 80000.0, (188, 1) = 56.39356400502512, (188, 2) = 80000.0, (189, 1) = 56.67070174070351, (189, 2) = 80000.0, (190, 1) = 56.98900450552763, (190, 2) = 80000.0, (191, 1) = 57.288225838190954, (191, 2) = 80000.0, (192, 1) = 57.58455701909548, (192, 2) = 80000.0, (193, 1) = 57.881123933668334, (193, 2) = 80000.0, (194, 1) = 58.18360341407034, (194, 2) = 80000.0, (195, 1) = 58.504226595979894, (195, 2) = 80000.0, (196, 1) = 58.79820665728643, (196, 2) = 80000.0, (197, 1) = 59.08840272663316, (197, 2) = 80000.0, (198, 1) = 59.398617548743715, (198, 2) = 80000.0, (199, 1) = 59.708157060301495, (199, 2) = 80000.0, (200, 1) = 60.0, (200, 2) = 80000.0}, datatype = float[8])), COLOUR(RGB, .90196078, .90196078, .90196078), THICKNESS(0), AXESLABELS(x, ""), VIEW(0. .. 60., DEFAULT, _ATTRIBUTE("source" = "mathdefault")))

(7)

plots:-display(a3, b3, title = "Total Deaths \n (Linear scale)\n", titlefont = ["Helvetica", 18], size = [681, 400])

 

My guess is it was Dr. Fauci's hope that it would only go to 60,000 but it was also his interpretation of the log graph.  It could start to round a peak at some point and it will eventually, however based on the way people behave in North America and there will apparently be no complete lockdown, in my humble opinion, that graph is going to keep on sailing well passed 100,000.

 

 

NULL


 

Download log_misinterpretation2.mw

One of the forums asked a question: what is the maximum area of a triangle inscribed in a given ellipse x^2/16 + y^2/3 - 1 = 0? It turned out to be 9, but there are infinitely many such triangles. There was a desire to show them in one of the possible ways. This is a complete (as far as possible) set of such triangles.
(This is not an example of Maple programming; it is just an implementation of a Maple-based algorithm and the work of the Optimization package).
MAX_S_TRIAN_ANINATION.mw

This app shows the modeling and simulation of DNA carried out entirely in Maple. The mathematical model is inserted through the combination of trigonometric functions. It shows the graphs of the curvature vs time for its interpretation. Made for engineering and health science students.

MV_AC_R3_UNI_2020.mw

Lenin Araujo Castillo

Ambassador of Maple

 

 



Maple_for_Beginners.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft


Vectors in Spherical Coordinates using Tensor Notation

Edgardo S. Cheb-Terrab1 and Pascal Szriftgiser2

(2) Laboratoire PhLAM, UMR CNRS 8523, Université de Lille, F-59655, France

(1) Maplesoft

 

The following is a topic that appears frequently in formulations: given a 3D vector in spherical (or any curvilinear) coordinates, how do you represent and relate, in simple terms, the vector and the corresponding vectorial operations Gradient, Divergence, Curl and Laplacian using tensor notation?

 

The core of the answer is in the relation between the - say physical - vector components and the more abstract tensor covariant and contravariant components. Focusing the case of a transformation from Cartesian to spherical coordinates, the presentation below starts establishing that relationship between 3D vector and tensor components in Sec.I. In Sec.II, we verify the transformation formulas for covariant and contravariant components on the computer using TransformCoordinates. In Sec.III, those tensor transformation formulas are used to derive the vectorial form of the Gradient in spherical coordinates. In Sec.IV, we switch to using full tensor notation, a curvilinear metric and covariant derivatives to derive the 3D vector analysis traditional formulas in spherical coordinates for the Divergence, Curl, Gradient and Laplacian. On the way, some useful technics, like changing variables in 3D vectorial expressions, differential operators, using Jacobians, and shortcut notations are shown.

 

The computation below is reproducible in Maple 2020 using the Maplesoft Physics Updates v.640 or newer.

 

Start setting the spacetime to be 3-dimensional, Euclidean, and use Cartesian coordinates

with(Physics); with(Vectors)

Setup(dimension = 3, coordinates = cartesian, g_ = `+`, spacetimeindices = lowercaselatin)

`The dimension and signature of the tensor space are set to `[3, `+ + +`]

 

`Default differentiation variables for d_, D_ and dAlembertian are:`*{X = (x, y, z)}

 

`Systems of spacetime coordinates are:`*{X = (x, y, z)}

 

_______________________________________________________

 

`The Euclidean metric in coordinates `*[x, y, z]

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 18446744078312229334)

 

(`Defined Pauli sigma matrices (Psigma): `*sigma[1]*`, `*sigma[2]*`, `)*sigma[3]

 

__________________________________________________

 

_______________________________________________________

(1)

I. The line element in spherical coordinates and the scale-factors

 

 

In vector calculus, at the root of everything there is the line element `#mover(mi("dr"),mo("→"))`, which in Cartesian coordinates has the simple form

dr_ = _i*dx+_j*dy+_k*dz

dr_ = _i*dx+_j*dy+_k*dz

(1.1)

To compute the line element  `#mover(mi("dr"),mo("→"))` in spherical coordinates, the starting point is the transformation

tr := `~`[`=`]([X], ChangeCoordinates([X], spherical))

[x = r*sin(theta)*cos(phi), y = r*sin(theta)*sin(phi), z = r*cos(theta)]

(1.2)

Coordinates(S = [r, theta, phi])

`Systems of spacetime coordinates are:`*{S = (r, theta, phi), X = (x, y, z)}

(1.3)

Since in (dr_ = _i*dx+_j*dy+_k*dz)*[dx, dy, dz] are just symbols with no relationship to "[x,y,z],"start transforming these differentials using the chain rule, computing the Jacobian of the transformation (1.2). In this Jacobian J, the first line is "[(∂x)/(∂r)dr", "(∂x)/(∂theta)"`dθ`, "(∂x)/(∂phi)dphi]"

J := VectorCalculus:-Jacobian(map(rhs, [x = r*sin(theta)*cos(phi), y = r*sin(theta)*sin(phi), z = r*cos(theta)]), [S])

 

So in matrix notation,

Vector([dx, dy, dz]) = J.Vector([dr, dtheta, dphi])

Vector[column](%id = 18446744078518652550) = Vector[column](%id = 18446744078518652790)

(1.4)

To complete the computation of  `#mover(mi("dr"),mo("→"))` in spherical coordinates we can now use ChangeBasis , provided that next we substitute (1.4) in the result, expressing the abstract objects [dx, dy, dz] in terms of [dr, `dθ`, `dφ`].

 

In two steps:

lhs(dr_ = _i*dx+_j*dy+_k*dz) = ChangeBasis(rhs(dr_ = _i*dx+_j*dy+_k*dz), spherical)

dr_ = (dx*sin(theta)*cos(phi)+dy*sin(theta)*sin(phi)+dz*cos(theta))*_r+(dx*cos(phi)*cos(theta)+dy*sin(phi)*cos(theta)-dz*sin(theta))*_theta+(cos(phi)*dy-sin(phi)*dx)*_phi

(1.5)

The line element

"simplify(subs(convert(lhs(?) =~ rhs(?),set),dr_ = (dx*sin(theta)*cos(phi)+dy*sin(theta)*sin(phi)+dz*cos(theta))*_r+(dx*cos(phi)*cos(theta)+dy*sin(phi)*cos(theta)-dz*sin(theta))*_theta+(cos(phi)*dy-sin(phi)*dx)*_phi))"

dr_ = _phi*dphi*r*sin(theta)+_theta*dtheta*r+_r*dr

(1.6)

This result is important: it gives us the so-called scale factors, the key that connect 3D vectors with the related covariant and contravariant tensors in curvilinear coordinates. The scale factors are computed from (1.6) by taking the scalar product with each of the unit vectors [`#mover(mi("r"),mo("∧"))`, `#mover(mi("θ",fontstyle = "normal"),mo("∧"))`, `#mover(mi("φ",fontstyle = "normal"),mo("∧"))`], then taking the coefficients of the differentials [dr, `dθ`, `dφ`] (just substitute them by the number 1)

h := subs(`~`[`=`]([dr, `dθ`, `dφ`], 1), [seq(rhs(dr_ = _phi*dphi*r*sin(theta)+_theta*dtheta*r+_r*dr).q, q = [`#mover(mi("r"),mo("∧"))`, `#mover(mi("θ",fontstyle = "normal"),mo("∧"))`, `#mover(mi("φ",fontstyle = "normal"),mo("∧"))`])])

[1, r, r*sin(theta)]

(1.7)

The scale factors are relevant because the components of the 3D vector and the corresponding tensor are not the same in curvilinear coordinates. For instance, representing the differential of the coordinates as the tensor dS^j = [dr, `dθ`, `dφ`], we see that corresponding vector, the line element in spherical coordinates `#mover(mi("dS"),mo("→"))`, is not  constructed by directly equating its components to the components of dS^j = [dr, `dθ`, `dφ`], so  

 

 `#mover(mi("dS"),mo("&rarr;"))` <> `d&phi;`*`#mover(mi("&phi;",fontstyle = "normal"),mo("&and;"))`+dr*`#mover(mi("r"),mo("&and;"))`+`d&theta;`*`#mover(mi("&theta;",fontstyle = "normal"),mo("&and;"))` 

 

The vector `#mover(mi("dS"),mo("&rarr;"))` is constructed multiplying these contravariant components [dr, `d&theta;`, `d&phi;`] by the scaling factors, as

 

 `#mover(mi("dS"),mo("&rarr;"))` = `d&phi;`*`h__&phi;`*`#mover(mi("&phi;",fontstyle = "normal"),mo("&and;"))`+dr*h__r*`#mover(mi("r"),mo("&and;"))`+`d&theta;`*`h__&theta;`*`#mover(mi("&theta;",fontstyle = "normal"),mo("&and;"))` 

 

This rule applies in general. The vectorial components of a 3D vector in an orthogonal system (curvilinear or not) are always expressed in terms of the contravariant components A^j the same way we did in the line above with the line element, using the scale-factors h__j, so that

 

 `#mover(mi("A"),mo("&rarr;"))` = Sum(h[j]*A^j*`#mover(mi("\`e__j\`"),mo("&circ;"))`, j = 1 .. 3)

 

where on the right-hand side we see the contravariant components "A[]^(j)" and the scale-factors h[j]. Because the system is orthogonal, each vector component `#msub(mi("A",fontstyle = "normal"),mfenced(mi("j")))`satisfies

A__j = h[j]*A[`~j`]

 

The scale-factors h[j] do not constitute a tensor, so on the right-hand side we do not sum over j.  Also, from

 

LinearAlgebra[Norm](`#mover(mi("A"),mo("&rarr;"))`) = A[j]*A[`~j`]

it follows that,

A__j = A__j/h__j

where on the right-hand side we now have the covariant tensor components A__j.

 

• 

This relationship between the components of a 3D vector and the contravariant and covariant components of a tensor representing the vector is key to translate vector-component to corresponding tensor-component formulas.

 

II. Transformation of contravariant and covariant tensors

 

 

Define here two representations for one and the same tensor: A__c will represent A in Cartesian coordinates, while A__s will represent A in spherical coordinates.

Define(A__c[j], A__s[j])

`Defined objects with tensor properties`

 

{A__c[j], A__s[j], Physics:-Dgamma[a], Physics:-Psigma[a], Physics:-d_[a], Physics:-g_[a, b], Physics:-LeviCivita[a, b, c], Physics:-SpaceTimeVector[a](S), Physics:-SpaceTimeVector[a](X)}

(2.1)

Transformation rule for a contravariant tensor

 

We know, by definition, that the transformation rule for the components of a contravariant tensor is `#mrow(msup(mi("A"),mi("&mu;",fontstyle = "normal")),mo("&ApplyFunction;"),mfenced(mi("y")),mo("&equals;"),mfrac(mrow(mo("&PartialD;"),msup(mi("y"),mi("&mu;",fontstyle = "normal"))),mrow(mo("&PartialD;"),msup(mi("x"),mi("&nu;",fontstyle = "normal"))),linethickness = "1"),mo("&InvisibleTimes;"),mo("&InvisibleTimes;"),msup(mi("A"),mi("&nu;",fontstyle = "normal")),mfenced(mi("x")))`, that is the same as the rule for the differential of the coordinates. Then, the transformation rule from "`A__c`[]^(j)" to "`A__s`[]^(j)"computed using TransformCoordinates should give the same relation (1.4). The application of the command, however, requires attention, because, as in (1.4), we want the Cartesian (not the spherical) components isolated. That is like performing a reversed transformation. So we will use

 

"TensorArray(`A__c`[]^(j))=TransformCoordinates(tr,`A__s`[]^(j),[X],[S])"

where on the left-hand side we get, isolated, the three components of A in Cartesian coordinates, and on the right-hand side we transform the spherical components "`A__c`[]^(j)", from spherical S = (r, theta, phi) (4th argument) to Cartesian X = (x, y, z) (3rd argument), which according to the 5th bullet of TransformCoordinates  will result in a transformation expressed in terms of the old coordinates (here the spherical [S]). Expand things to make the comparison with (1.4) possible by eye

 

Vector[column](TensorArray(A__c[`~j`])) = TransformCoordinates(tr, A__s[`~j`], [X], [S], simplifier = expand)

Vector[column](%id = 18446744078459463070) = Vector[column](%id = 18446744078459463550)

(2.2)

We see that the transformation rule for a contravariant vector "`A__c`[]^(j)"is, indeed, as the transformation (1.4) for the differential of the coordinates.

Transformation rule for a covariant tensor

 

For the transformation rule for the components of a covariant tensor A__c[j], we know, by definition, that it is `#mrow(msub(mi("A"),mi("&mu;",fontstyle = "normal")),mo("&ApplyFunction;"),mfenced(mi("y")),mo("&equals;"),mfrac(mrow(mo("&PartialD;"),msup(mi("x"),mi("&nu;",fontstyle = "normal"))),mrow(mo("&PartialD;"),msup(mi("y"),mi("&mu;",fontstyle = "normal"))),linethickness = "1"),mo("&InvisibleTimes;"),mo("&InvisibleTimes;"),msub(mi("A"),mi("&nu;",fontstyle = "normal")),mfenced(mi("x")))`, so the same transformation rule for the gradient [`&PartialD;`[x], `&PartialD;`[y], `&PartialD;`[z]], where `&PartialD;`[x] = (proc (u) options operator, arrow; diff(u, x) end proc) and so on. We can experiment this by directly changing variables in the differential operators [`&PartialD;`[x], `&PartialD;`[y], `&PartialD;`[z]], for example

d_[x] = PDEtools:-dchange(tr, proc (u) options operator, arrow; diff(u, x) end proc, simplify)

Physics:-d_[x] = (proc (u) options operator, arrow; ((-r*cos(theta)^2+r)*cos(phi)*(diff(u, r))+sin(theta)*cos(phi)*cos(theta)*(diff(u, theta))-(diff(u, phi))*sin(phi))/(r*sin(theta)) end proc)

(2.3)

This result, and the equivalent ones replacing x by y or z in the input above can be computed in one go, in matricial and simplified form, using the Jacobian of the transformation computed in . We need to take the transpose of the inverse of J (because now we are transforming the components of the gradient   [`&PartialD;`[x], `&PartialD;`[y], `&PartialD;`[z]])

H := simplify(LinearAlgebra:-Transpose(1/J))

Vector([d_[x], d_[y], d_[z]]) = H.Vector([d_[r], d_[theta], d_[phi]])

Vector[column](%id = 18446744078518933014) = Vector[column](%id = 18446744078518933254)

(2.4)

The corresponding transformation equations relating the tensors A__c and A__s in Cartesian and spherical coordinates is computed with TransformCoordinates  as in (2.2), just lowering the indices on the left and right hand sides (i.e., remove the tilde ~)

Vector[column](TensorArray(A__c[j])) = TransformCoordinates(tr, A__s[j], [X], [r, theta, phi], simplifier = expand)

Vector[column](%id = 18446744078557373854) = Vector[column](%id = 18446744078557374334)

(2.5)

We see that the transformation rule for a covariant vector A__c[j] is, indeed, as the transformation rule (2.4) for the gradient.

 

To the side: once it is understood how to compute these transformation rules, we can have the inverse of (2.5) as follows

Vector[column](TensorArray(A__s[j])) = TransformCoordinates(tr, A__c[j], [S], [X], simplifier = expand)

Vector[column](%id = 18446744078557355894) = Vector[column](%id = 18446744078557348198)

(2.6)

III. Deriving the transformation rule for the Gradient using TransformCoordinates

 

 

Turn ON the CompactDisplay  notation for derivatives, so that the differentiation variable is displayed as an index:

ON


The gradient of a function f in Cartesian coordinates and spherical coordinates is respectively given by

(%Nabla = Nabla)(f(X))

%Nabla(f(X)) = (diff(f(X), x))*_i+(diff(f(X), y))*_j+(diff(f(X), z))*_k

(3.1)

(%Nabla = Nabla)(f(S))

%Nabla(f(S)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

(3.2)

What we want now is to depart from (3.1) in Cartesian coordinates and obtain (3.2) in spherical coordinates using the transformation rule for a covariant tensor computed with TransformCoordinates in (2.5). (An equivalent derivation, simpler and with less steps is done in Sec. IV.)

 

Start changing the vector basis in the gradient (3.1)

lhs(%Nabla(f(X)) = (diff(f(X), x))*_i+(diff(f(X), y))*_j+(diff(f(X), z))*_k) = ChangeBasis(rhs(%Nabla(f(X)) = (diff(f(X), x))*_i+(diff(f(X), y))*_j+(diff(f(X), z))*_k), spherical)

%Nabla(f(X)) = ((diff(f(X), x))*sin(theta)*cos(phi)+(diff(f(X), y))*sin(theta)*sin(phi)+(diff(f(X), z))*cos(theta))*_r+((diff(f(X), x))*cos(phi)*cos(theta)+(diff(f(X), y))*sin(phi)*cos(theta)-(diff(f(X), z))*sin(theta))*_theta+(-(diff(f(X), x))*sin(phi)+cos(phi)*(diff(f(X), y)))*_phi

(3.3)

By eye, we see that in this result the coefficients of [`#mover(mi("r"),mo("&and;"))`, `#mover(mi("&theta;",fontstyle = "normal"),mo("&and;"))`, `#mover(mi("&phi;",fontstyle = "normal"),mo("&and;"))`] are the three lines in the right-hand side of (2.6) after replacing the covariant components A__j by the derivatives of f with respect to the jth coordinate, here displayed using indexed notation due to using CompactDisplay

`~`[`=`]([A__s[1], A__s[2], A__s[3]], [diff(f(S), r), diff(f(S), theta), diff(f(S), phi)])

[A__s[1] = Physics:-Vectors:-diff(f(S), r), A__s[2] = Physics:-Vectors:-diff(f(S), theta), A__s[3] = Physics:-Vectors:-diff(f(S), phi)]

(3.4)

`~`[`=`]([A__c[1], A__c[2], A__c[3]], [diff(f(X), x), diff(f(X), y), diff(f(X), z)])

[A__c[1] = Physics:-Vectors:-diff(f(X), x), A__c[2] = Physics:-Vectors:-diff(f(X), y), A__c[3] = Physics:-Vectors:-diff(f(X), z)]

(3.5)

So since (2.5) is the inverse of (2.6), replace A by ∂ f in (2.5), the formula computed using TransformCoordinates, then insert the result in (3.3) to relate the gradient in Cartesian and spherical coordinates. We expect to arrive at the formula for the gradient in spherical coordinates (3.2) .

"subs([A__s[1] = Physics:-Vectors:-diff(f(S),r), A__s[2] = Physics:-Vectors:-diff(f(S),theta), A__s[3] = Physics:-Vectors:-diff(f(S),phi)],[A__c[1] = Physics:-Vectors:-diff(f(X),x), A__c[2] = Physics:-Vectors:-diff(f(X),y), A__c[3] = Physics:-Vectors:-diff(f(X),z)],?)"

Vector[column](%id = 18446744078344866862) = Vector[column](%id = 18446744078344866742)

(3.6)

"subs(convert(lhs(?) =~ rhs(?),set),%Nabla(f(X)) = (diff(f(X),x)*sin(theta)*cos(phi)+diff(f(X),y)*sin(theta)*sin(phi)+diff(f(X),z)*cos(theta))*_r+(diff(f(X),x)*cos(phi)*cos(theta)+diff(f(X),y)*sin(phi)*cos(theta)-diff(f(X),z)*sin(theta))*_theta+(-diff(f(X),x)*sin(phi)+cos(phi)*diff(f(X),y))*_phi)"

%Nabla(f(X)) = ((sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(theta)*cos(phi)+(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(theta)*sin(phi)+(cos(theta)*(diff(f(S), r))-sin(theta)*(diff(f(S), theta))/r)*cos(theta))*_r+((sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*cos(phi)*cos(theta)+(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(phi)*cos(theta)-(cos(theta)*(diff(f(S), r))-sin(theta)*(diff(f(S), theta))/r)*sin(theta))*_theta+(-(sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(phi)+cos(phi)*(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta))))*_phi

(3.7)

Simplifying, we arrive at (3.2)

(lhs = `@`(`@`(expand, simplify), rhs))(%Nabla(f(X)) = ((sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(theta)*cos(phi)+(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(theta)*sin(phi)+(cos(theta)*(diff(f(S), r))-sin(theta)*(diff(f(S), theta))/r)*cos(theta))*_r+((sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*cos(phi)*cos(theta)+(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(phi)*cos(theta)-(cos(theta)*(diff(f(S), r))-sin(theta)*(diff(f(S), theta))/r)*sin(theta))*_theta+(-(sin(theta)*cos(phi)*(diff(f(S), r))+cos(theta)*cos(phi)*(diff(f(S), theta))/r-sin(phi)*(diff(f(S), phi))/(r*sin(theta)))*sin(phi)+cos(phi)*(sin(theta)*sin(phi)*(diff(f(S), r))+cos(theta)*sin(phi)*(diff(f(S), theta))/r+cos(phi)*(diff(f(S), phi))/(r*sin(theta))))*_phi)

%Nabla(f(X)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

(3.8)

%Nabla(f(S)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

%Nabla(f(S)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

(3.9)

IV. Deriving the transformation rule for the Divergence, Curl, Gradient and Laplacian, using TransformCoordinates and Covariant derivatives

 

 

• 

The Divergence

 

Introducing the vector A in spherical coordinates, its Divergence is given by

A__s_ := A__r(S)*_r+`A__&theta;`(S)*_theta+`A__&phi;`(S)*_phi

A__r(S)*_r+`A__&theta;`(S)*_theta+`A__&phi;`(S)*_phi

(4.1)

CompactDisplay(%)

` A__r`(S)*`will now be displayed as`*A__r

 

` A__&phi;`(S)*`will now be displayed as`*`A__&phi;`

 

` A__&theta;`(S)*`will now be displayed as`*`A__&theta;`

(4.2)

%Divergence(%A__s_) = Divergence(A__s_)

%Divergence(%A__s_) = ((diff(A__r(S), r))*r+2*A__r(S))/r+((diff(`A__&theta;`(S), theta))*sin(theta)+`A__&theta;`(S)*cos(theta))/(r*sin(theta))+(diff(`A__&phi;`(S), phi))/(r*sin(theta))

(4.3)

We want to see how this result, (4.3), can be obtained using TransformCoordinates and departing from a tensorial representation of the object, this time the covariant derivative "`&dtri;`[j](`A__s`[]^(j))". For that purpose, we first transform the coordinates and the metric introducing nonzero Christoffel symbols

TransformCoordinates(tr, g_[j, k], [S], setmetric)

`Systems of spacetime coordinates are:`*{S = (r, theta, phi), X = (x, y, z)}

 

`Changing the differentiation variables used to compute the Christoffel symbols from `[x, y, z]*` to `[r, theta, phi]*` while the spacetime metric depends on `[r, theta]

 

`Default differentiation variables for d_, D_ and dAlembertian are:`*{S = (r, theta, phi)}

 

_______________________________________________________

 

`Coordinates: `[r, theta, phi]*`. Signature: `(`+ + -`)

 

_______________________________________________________

 

Physics:-g_[a, b] = Matrix(%id = 18446744078312216446)

 

_______________________________________________________

 

`Setting `*greek*` letters to represent `*space*` indices`

(4.4)

To the side: despite having nonzero Christoffel symbols, the space still has no curvature, all the components of the Riemann tensor are equal to zero

Riemann[nonzero]

Physics:-Riemann[a, b, c, d] = {}

(4.5)

Consider now the divergence of the contravariant "`A__s`[]^(j)"tensor, computed in tensor notation

CompactDisplay(A__s(S))

` A__s`(S)*`will now be displayed as`*A__s

(4.6)

D_[j](A__s[`~j`](S))

Physics:-D_[j](A__s[`~j`](S), [S])

(4.7)

To the side: the covariant derivative  expressed using the D_  operator can be rewritten in terms of the non-covariant d_  and Christoffel  symbols as follows

D_[j](A__s[`~j`](S), [S]) = convert(D_[j](A__s[`~j`](S), [S]), d_)

Physics:-D_[j](A__s[`~j`](S), [S]) = Physics:-d_[j](A__s[`~j`](S), [S])+Physics:-Christoffel[`~j`, a, j]*A__s[`~a`](S)

(4.8)

Summing over the repeated indices in (4.7), we have

%D_[j](%A__s[`~j`]) = SumOverRepeatedIndices(D_[j](A__s[`~j`](S), [S]))

%D_[j](%A__s[`~j`]) = diff(A__s[`~1`](S), r)+diff(A__s[`~2`](S), theta)+diff(A__s[`~3`](S), phi)+2*A__s[`~1`](S)/r+cos(theta)*A__s[`~2`](S)/sin(theta)

(4.9)

How is this related to the expression of the VectorCalculus[Nabla].`#mover(mi("\`A__s\`"),mo("&rarr;"))` in (4.3) ? The answer is in the relationship established at the end of Sec I between the components of the tensor "`A__s`[]^(j)"and the components of the vector `#mover(mi("\`A__s\`"),mo("&rarr;"))`, namely that the vector components are obtained multiplying the contravariant tensor components by the scale-factors h__j. So, in the above we need to substitute the contravariant "`A__s`[]^(j)" by the vector components A__j divided by the scale-factors

[seq(A__s[Library:-Contravariant(j)](S) = Component(A__s_, j)/h[j], j = 1 .. 3)]

[A__s[`~1`](S) = A__r(S), A__s[`~2`](S) = `A__&theta;`(S)/r, A__s[`~3`](S) = `A__&phi;`(S)/(r*sin(theta))]

(4.10)

subs[eval]([A__s[`~1`](S) = A__r(S), A__s[`~2`](S) = `A__&theta;`(S)/r, A__s[`~3`](S) = `A__&phi;`(S)/(r*sin(theta))], %D_[j](%A__s[`~j`]) = diff(A__s[`~1`](S), r)+diff(A__s[`~2`](S), theta)+diff(A__s[`~3`](S), phi)+2*A__s[`~1`](S)/r+cos(theta)*A__s[`~2`](S)/sin(theta))

%D_[j](%A__s[`~j`]) = diff(A__r(S), r)+(diff(`A__&theta;`(S), theta))/r+(diff(`A__&phi;`(S), phi))/(r*sin(theta))+2*A__r(S)/r+cos(theta)*`A__&theta;`(S)/(sin(theta)*r)

(4.11)

Comparing with (4.3), we see these two expressions are the same:

expand(%Divergence(%A__s_) = ((diff(A__r(S), r))*r+2*A__r(S))/r+((diff(`A__&theta;`(S), theta))*sin(theta)+`A__&theta;`(S)*cos(theta))/(r*sin(theta))+(diff(`A__&phi;`(S), phi))/(r*sin(theta)))

%Divergence(%A__s_) = diff(A__r(S), r)+(diff(`A__&theta;`(S), theta))/r+(diff(`A__&phi;`(S), phi))/(r*sin(theta))+2*A__r(S)/r+cos(theta)*`A__&theta;`(S)/(sin(theta)*r)

(4.12)
• 

The Curl

 

The Curl of the the vector `#mover(mi("\`A__s\`"),mo("&rarr;"))` in spherical coordinates is given by

%Curl(%A__s_) = Curl(A__s_)

%Curl(%A__s_) = ((diff(`A__&phi;`(S), theta))*sin(theta)+`A__&phi;`(S)*cos(theta)-(diff(`A__&theta;`(S), phi)))*_r/(r*sin(theta))+(diff(A__r(S), phi)-(diff(`A__&phi;`(S), r))*r*sin(theta)-`A__&phi;`(S)*sin(theta))*_theta/(r*sin(theta))+((diff(`A__&theta;`(S), r))*r+`A__&theta;`(S)-(diff(A__r(S), theta)))*_phi/r

(4.13)

 

One could think that the expression for the Curl in tensor notation is as in a non-curvilinear system

 

"`&epsilon;`[i,j,k] `&dtri;`[]^(j)(`A__s`[]^(k))"

 

But in a curvilinear system `&epsilon;`[i, j, k] is not a tensor, we need to use the non-Galilean form Epsilon[i, j, k] = sqrt(%g_[determinant])*`&epsilon;`[i, j, k], where %g_[determinant] is the determinant of the metric. Moreover, since the expression "Epsilon[i,j,k] `&dtri;`[]^(j)(`A__s`[]^(k))"has one free covariant index (the first one), to compare with the vectorial formula (4.12) this index also needs to be rewritten as a vector component as discussed at the end of Sec. I, using

A__j = A__j/h__j

The formula (4.13) for the vectorial Curl is thus expressed using tensor notation as

Setup(levicivita = nongalilean)

[levicivita = nongalilean]

(4.14)

%Curl(%A__s_) = LeviCivita[i, j, k]*D_[`~j`](A__s[`~k`](S))/%h[i]

%Curl(%A__s_) = Physics:-LeviCivita[i, j, k]*Physics:-D_[`~j`](A__s[`~k`](S), [S])/%h[i]

(4.15)

followed by replacing the contravariant tensor components "`A__s`[]^(k)" by the vector components A__k/h__k using (4.10). Proceeding the same way we did with the Divergence, expand this expression. We could use TensorArray , but Library:-TensorComponents places a comma between components making things more readable in this case

lhs(%Curl(%A__s_) = Physics[LeviCivita][i, j, k]*D_[`~j`](A__s[`~k`](S), [S])/%h[i]) = Library:-TensorComponents(rhs(%Curl(%A__s_) = Physics[LeviCivita][i, j, k]*D_[`~j`](A__s[`~k`](S), [S])/%h[i]))

%Curl(%A__s_) = [(sin(theta)^3*(diff(A__s[`~3`](S), theta))*r^2+2*sin(theta)^2*cos(theta)*A__s[`~3`](S)*r^2-(diff(A__s[`~2`](S), phi))*sin(theta)*r^2)/(%h[1]*sin(theta)^2*r^2), (-sin(theta)^3*(diff(A__s[`~3`](S), r))*r^4-2*sin(theta)^3*A__s[`~3`](S)*r^3+(diff(A__s[`~1`](S), phi))*sin(theta)*r^2)/(%h[2]*sin(theta)^2*r^2), (sin(theta)^3*(diff(A__s[`~2`](S), r))*r^4+2*sin(theta)^3*A__s[`~2`](S)*r^3-sin(theta)^3*(diff(A__s[`~1`](S), theta))*r^2)/(%h[3]*sin(theta)^2*r^2)]

(4.16)

Replace now the components of the tensor "`A__s`[]^(j)" by the components of the 3D vector `#mover(mi("\`A__s\`"),mo("&rarr;"))` using (4.10)

lhs(%Curl(%A__s_) = [(sin(theta)^3*(diff(A__s[`~3`](S), theta))*r^2+2*sin(theta)^2*cos(theta)*A__s[`~3`](S)*r^2-(diff(A__s[`~2`](S), phi))*sin(theta)*r^2)/(%h[1]*sin(theta)^2*r^2), (-sin(theta)^3*(diff(A__s[`~3`](S), r))*r^4-2*sin(theta)^3*A__s[`~3`](S)*r^3+(diff(A__s[`~1`](S), phi))*sin(theta)*r^2)/(%h[2]*sin(theta)^2*r^2), (sin(theta)^3*(diff(A__s[`~2`](S), r))*r^4+2*sin(theta)^3*A__s[`~2`](S)*r^3-sin(theta)^3*(diff(A__s[`~1`](S), theta))*r^2)/(%h[3]*sin(theta)^2*r^2)]) = value(subs[eval]([A__s[`~1`](S) = A__r(S), A__s[`~2`](S) = `A__&theta;`(S)/r, A__s[`~3`](S) = `A__&phi;`(S)/(r*sin(theta))], rhs(%Curl(%A__s_) = [(sin(theta)^3*(diff(A__s[`~3`](S), theta))*r^2+2*sin(theta)^2*cos(theta)*A__s[`~3`](S)*r^2-(diff(A__s[`~2`](S), phi))*sin(theta)*r^2)/(%h[1]*sin(theta)^2*r^2), (-sin(theta)^3*(diff(A__s[`~3`](S), r))*r^4-2*sin(theta)^3*A__s[`~3`](S)*r^3+(diff(A__s[`~1`](S), phi))*sin(theta)*r^2)/(%h[2]*sin(theta)^2*r^2), (sin(theta)^3*(diff(A__s[`~2`](S), r))*r^4+2*sin(theta)^3*A__s[`~2`](S)*r^3-sin(theta)^3*(diff(A__s[`~1`](S), theta))*r^2)/(%h[3]*sin(theta)^2*r^2)])))

%Curl(%A__s_) = [(sin(theta)^3*((diff(`A__&phi;`(S), theta))/(r*sin(theta))-`A__&phi;`(S)*cos(theta)/(r*sin(theta)^2))*r^2+2*sin(theta)*cos(theta)*`A__&phi;`(S)*r-(diff(`A__&theta;`(S), phi))*r*sin(theta))/(h[1]*sin(theta)^2*r^2), (-sin(theta)^3*((diff(`A__&phi;`(S), r))/(r*sin(theta))-`A__&phi;`(S)/(r^2*sin(theta)))*r^4-2*sin(theta)^2*`A__&phi;`(S)*r^2+(diff(A__r(S), phi))*sin(theta)*r^2)/(h[2]*sin(theta)^2*r^2), (sin(theta)^3*((diff(`A__&theta;`(S), r))/r-`A__&theta;`(S)/r^2)*r^4+2*sin(theta)^3*`A__&theta;`(S)*r^2-sin(theta)^3*(diff(A__r(S), theta))*r^2)/(h[3]*sin(theta)^2*r^2)]

(4.17)

(lhs = `@`(simplify, rhs))(%Curl(%A__s_) = [(sin(theta)^3*((diff(`A__&phi;`(S), theta))/(r*sin(theta))-`A__&phi;`(S)*cos(theta)/(r*sin(theta)^2))*r^2+2*sin(theta)*cos(theta)*`A__&phi;`(S)*r-(diff(`A__&theta;`(S), phi))*r*sin(theta))/(h[1]*sin(theta)^2*r^2), (-sin(theta)^3*((diff(`A__&phi;`(S), r))/(r*sin(theta))-`A__&phi;`(S)/(r^2*sin(theta)))*r^4-2*sin(theta)^2*`A__&phi;`(S)*r^2+(diff(A__r(S), phi))*sin(theta)*r^2)/(h[2]*sin(theta)^2*r^2), (sin(theta)^3*((diff(`A__&theta;`(S), r))/r-`A__&theta;`(S)/r^2)*r^4+2*sin(theta)^3*`A__&theta;`(S)*r^2-sin(theta)^3*(diff(A__r(S), theta))*r^2)/(h[3]*sin(theta)^2*r^2)])

%Curl(%A__s_) = [((diff(`A__&phi;`(S), theta))*sin(theta)+`A__&phi;`(S)*cos(theta)-(diff(`A__&theta;`(S), phi)))/(r*sin(theta)), (diff(A__r(S), phi)-(diff(`A__&phi;`(S), r))*r*sin(theta)-`A__&phi;`(S)*sin(theta))/(r*sin(theta)), ((diff(`A__&theta;`(S), r))*r+`A__&theta;`(S)-(diff(A__r(S), theta)))/r]

(4.18)

We see these are exactly the components of the Curl (4.13)

%Curl(%A__s_) = ((diff(`A__&phi;`(S), theta))*sin(theta)+`A__&phi;`(S)*cos(theta)-(diff(`A__&theta;`(S), phi)))*_r/(r*sin(theta))+(diff(A__r(S), phi)-(diff(`A__&phi;`(S), r))*r*sin(theta)-`A__&phi;`(S)*sin(theta))*_theta/(r*sin(theta))+((diff(`A__&theta;`(S), r))*r+`A__&theta;`(S)-(diff(A__r(S), theta)))*_phi/r

%Curl(%A__s_) = ((diff(`A__&phi;`(S), theta))*sin(theta)+`A__&phi;`(S)*cos(theta)-(diff(`A__&theta;`(S), phi)))*_r/(r*sin(theta))+(diff(A__r(S), phi)-(diff(`A__&phi;`(S), r))*r*sin(theta)-`A__&phi;`(S)*sin(theta))*_theta/(r*sin(theta))+((diff(`A__&theta;`(S), r))*r+`A__&theta;`(S)-(diff(A__r(S), theta)))*_phi/r

(4.19)
• 

The Gradient

 

Once the problem is fully understood, it is easy to redo the computations of Sec.III for the Gradient, this time using tensor notation and the covariant derivative. In tensor notation, the components of the Gradient are given by the components of the right-hand side

%Nabla(f(S)) = `&dtri;`[j](f(S))/%h[j]

%Nabla(f(S)) = Physics:-d_[j](f(S), [S])/%h[j]

(4.20)

where on the left-hand side we have the vectorial Nabla  differential operator and on the right-hand side, since f(S) is a scalar, the covariant derivative `&dtri;`[j](f) becomes the standard derivative `&PartialD;`[j](f).

lhs(%Nabla(f(S)) = Physics[d_][j](f(S), [S])/%h[j]) = eval(value(Library:-TensorComponents(rhs(%Nabla(f(S)) = Physics[d_][j](f(S), [S])/%h[j]))))

%Nabla(f(S)) = [Physics:-Vectors:-diff(f(S), r), (diff(f(S), theta))/r, (diff(f(S), phi))/(r*sin(theta))]

(4.21)

The above is the expected result (3.2)

%Nabla(f(S)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

%Nabla(f(S)) = (diff(f(S), r))*_r+(diff(f(S), theta))*_theta/r+(diff(f(S), phi))*_phi/(r*sin(theta))

(4.22)
• 

The Laplacian

 

Likewise we can compute the Laplacian directly as

%Laplacian(f(S)) = D_[j](D_[j](f(S)))

%Laplacian(f(S)) = Physics:-D_[j](Physics:-d_[`~j`](f(S), [S]), [S])

(4.23)

In this case there are no free indices nor tensor components to be rewritten as vector components, so there is no need for scale-factors. Summing over the repeated indices,

SumOverRepeatedIndices(%Laplacian(f(S)) = D_[j](Physics[d_][`~j`](f(S), [S]), [S]))

%Laplacian(f(S)) = Physics:-dAlembertian(f(S), [S])+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2)

(4.24)

Evaluating the  Vectors:-Laplacian on the left-hand side,

value(%Laplacian(f(S)) = Physics[dAlembertian](f(S), [S])+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2))

((diff(diff(f(S), r), r))*r+2*(diff(f(S), r)))/r+((diff(diff(f(S), theta), theta))*sin(theta)+cos(theta)*(diff(f(S), theta)))/(r^2*sin(theta))+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2) = Physics:-dAlembertian(f(S), [S])+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2)

(4.25)

On the right-hand side we see the dAlembertian , "`&square;`(f(S)),"in curvilinear coordinates; rewrite it using standard diff  derivatives and expand both sides of the equation for comparison

expand(convert(((diff(diff(f(S), r), r))*r+2*(diff(f(S), r)))/r+((diff(diff(f(S), theta), theta))*sin(theta)+cos(theta)*(diff(f(S), theta)))/(r^2*sin(theta))+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2) = Physics[dAlembertian](f(S), [S])+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2), diff))

diff(diff(f(S), r), r)+(diff(diff(f(S), theta), theta))/r^2+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2)+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2) = diff(diff(f(S), r), r)+(diff(diff(f(S), theta), theta))/r^2+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2)+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2)

(4.26)

This is an identity, the left and right hand sides are equal:

evalb(diff(diff(f(S), r), r)+(diff(diff(f(S), theta), theta))/r^2+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2)+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2) = diff(diff(f(S), r), r)+(diff(diff(f(S), theta), theta))/r^2+(diff(diff(f(S), phi), phi))/(r^2*sin(theta)^2)+2*(diff(f(S), r))/r+cos(theta)*(diff(f(S), theta))/(sin(theta)*r^2))

true

(4.27)


 

Download Vectors_and_Spherical_coordinates_in_tensor_notation.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

A way of cutting holes on an implicit plot. This is from the field of numerical parameterization of surfaces. On the example of the surface  x3 = 0.01*exp (x1) / (0.01 + x1^4 + x2^4 + x3^4)  consider the approach to producing holes. The surface is locally parameterized in some suitable way and the place for the hole and its size are selected. In the first example, the parametrization is performed on the basis of the section of the initial surface by perpendicular planes. In the second example, "round"  parametrization. It is made on the basis of the cylinder and the planes passing through its axis. Holes can be of any size and any shape. In the figures, the cut out surface sections are colored green and are located above their own holes at an equidistant to the original surface.
HOLE_1.mwHOLE_2.mw

Hi, 

The present work is aimed to show how bayesian inference methods can be used to infer (= to assess) the probabilility that a person detected infected by the SARS-Cov2  has to die (remark I did not write "has to die if it" because one never be sure of the reason of the death).
A lot of details are avaliable in the attached pdf file (I tried to be pedagogic enough so that the people not familiar with bayesian inference can get a global understanding of the subject, many links are provided for quick access to the different notions).

In particular, I explain why simple mathematics cannot provide a reliable estimate of this probability of death (sometimes referred to as the "death rate") as long as the epidemic continues to spread.

Even if the approach presented here is rather original, this is not the purpose of this post. 
Since a long time I had in mind to post here an application concerning bayesian methods. The CoVid19 outbreak has only provided me with the most high-profile topic to do so.
I will say no more about the inference procedure itself (all the material is given in the attached pdf file) and I will only concentrate on the MAPLE implementation of the solution algorithm.

Bayesian Inference uses generally simple algorithms such as MCMC (Markov Chain Monte Carlo) or ABC (Approximate Bayesian Computation) to mention a few, and their corresponding pseudo code writes generally upon a few tens of lines.
This is something I already done with other languages but I found the task comparatively more difficult with Maple. Probably I was to obsess not to code in Maple as you code in Matlab or R for instance.
At the very end the code I wrote is rather slow, this because of the allocated memory size it uses.
In a question I posed weeks ago (How can I prevent the creation of random variables...) Preben gave a solution to limit the burst of the memory: the trick works well but I'm still stuked with memory size problems (Acer also poposed a solution but I wasn't capable to make it works... maybe I was too lazzy to modify deeply my code).

Anyway, the code is there, in case anyone would like to take up the challenge to make it more efficient (in which case I'll take it).

Note 1: this code contains a small "Maplet" to help you choose any country in the data file on which you would like to run the inference.
Note 2: Be careful: doing statistics, even bayesian statistics, needs enough data: some countries have history records ranging over a few days , or no recorded death at all; infering something from so loos date will probably be disappointing

The attached files:

  • The pdf file is the "companion document" where all or most of it is explained.It has been written a few days ago for another purpose and the results it presents were not ontained from the lattest data (march 21, 2020 coronavirus)
  • xls files are data files, they were loaded yesterday (march 28, 2020) from here coronavirus
  • the mw file... well, I guess you know what it is.
     

Bayesian_inference.pdf

total-cases-covid-19_NF.xls

total-deaths-covid-19_NF.xls

Bayesian_Inference_ABC+MCMC_NF_2.mw


 

The following puzzle prompted me to write this post: "A figure is drawn on checkered paper that needs to be cut into 2 equal parts (the cuts must pass along the sides of the squares.)" (parts are called equal if, after cutting, they can be superimposed on one another, that is, if one of them can be moved, rotated and (if need to) flip so that they completely coincide) (see the first picture below). 
I could not solve it manually and wrote a procedure called  CutTwoParts  that does this automatically (of course, this procedure applies to other similar puzzles). This procedure uses my procedure  AreIsometric  published earlier  https://www.mapleprimes.com/posts/200157-Testing-Of-Two-Plane-Sets-For-Isometry  (for convenience, I have included its text here). In the procedure  CutTwoParts  the figure is specified by the coordinates of the centers of the squares of which it consists).

I advise everyone to first try to solve this puzzle manually in order to feel its non-triviality, and only then load the worksheet with the procedure for automatic solution.


For some reason, the worksheet did not load and I was only able to insert the link.

Cuttings.mw



 

With this application our students of science and engineering in the areas of physics will check the first condition of balance using Maple technology. Only with entering mass and angles we obtain graphs and data for a better interpretation.

First_equilibrium_condition.zip

Lenin AC

Ambassador of Maple

So here's something silly but cool you can do with Maple while you're "working" from home.

  • Record a few seconds of your voice on a microphone that's close to your mouth (probably using a headset). This is your dry audio.
  • On your phone, record a single clap of your hands in an enclosed space, like your shower cubicle or a closet. Trim this audio to the clap, and the reverb created by your enclosed space. This is your impulse response.
  • Send both sound files to whatever computer you have Maple on.
  • Using AudioTools:-Convolution, convolve the dry audio with the impulse response . This your wet audio and should sound a little bit like your voice was recorded in your enclosed space.

Here's some code. I've also attached my dry audio, an impulse response recorded in my shower (yes, I stood inside my shower, closed the door, and recorded a single clap of my hands on my phone), and the resulting wet audio.

with( AudioTools ):
dry_audio := Read( "MaryHadALittleLamb_sc.wav" ):
impulse_response := Read( "clap_sc.wav" ):
wet_audio := Normalize( Convolution( dry_audio, impulse_response ) ):
Write("wet_audio.wav", wet_audio );

A full Maple worksheet is here.

AudioSamplesForReverb.zip

Hi,

Two weeks ago, I started loading data on the CoVid19 outbreak in order to understand, out of any official communication from any country, what is really going on.

From february 29 to march 9 these data come from https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ and from 10 march until now from https://www.worldometers.info/coronavirus/#repro.In all cases the loading is done manually (copy-paste onto a LibreOffice spreadsheet plus correction and save into a xls file) for I wasn't capable to find csv data (csv data do exist here https://github.com/CSSEGISandData/COVID-19, by they end febreuary 15th).
So I copied-pasted the results from the two sources above into a LibreOffice spreadsheet, adjusted the names of some countries for they appeared differently (for instance "United States" instead of "USA"), removed the unnessary commas and saved the result in a xls file.

I also used data from https://www.worldometers.info/world-population/population-by-country/ to get the populations of more than 260 countries around the world and, finally, csv data from https://ourworldindata.org/coronavirus#covid-19-tests to get synthetic histories of confirmed and death cases (I have discovered this site only yesterday evening and I think it could replace all the data I initially loaded).

The two worksheet here are aimed to exploratory and visualization only.
An other one is in progress whose goal is to infer the true death rate (also known as CFR, Case Fatality Rate).

No analysis is presented, if for no other reason than that the available data (except the numbers of deaths) are extremely dependent on the testing policies in place. But some features can be drawn from the data used here.
For instance, if you select country = "China" in file Covid19_Evolution_bis.mw, you will observe very well known behaviour which is that the "Apparent Death Rate", I defined as the ratio of the cumulated number of death at time t by the cumulatibe number of confirmed cases at the same time, is always an underestimation of the death rate one can only known once the outbreak has ended. With this in mind, changing the country in this worksheet from China to Italy seems to lead to frightening  scary interpolations... But here again, without knowing the test policy no solid conclusion can be drawn: maybe Italy tests mainly elder people with accute symptoms, thus the huge "Apparent Death Rate" Italy seems to have?


The work has been done with Maple 2015 and some graphics can be improved if a newer version is used (for instance, as Maple 2015 doesn't allow to change the direction of tickmarks, I overcome this limitation by assigning the date to the vertical axis on some plots).
The second Explore plot could probably be improved by using newer versions or Maplets or Embeded components.

Explore data from https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ and https://www.worldometers.info/coronavirus/#repro
Files to use
Covid19_Evolution.mw
Covid19_Data.m.zip
Population.xls

Explore data from  https://ourworldindata.org/coronavirus#covid-19-tests
Files to use
Covid19_Evolution_bis.mw
daily-deaths-covid-19-who.xls
total-cases-covid-19-who.xls
Population.xls


I would be interested by any open collaboration with people interested by this post (it's not in my intention to write papers on the subject, my only motivation is scientific curiosity).

 

First 19 20 21 22 23 24 25 Last Page 21 of 77