Applications, Examples and Libraries

Share your work here

Ibragimova Evelina, 6th form,
school № 57, Kazan

 

     Matreshka.mws 

 

 

 

 Ibragimova Evelina, the 6th form

 school # 57, Kazan, Russia

The Units Converter

restart:
`Conversion formula`;
d:=l=n*m:
d;

                    Conversion formula
                    l = n m

m - shows how many minor units in one major one (coefficient)
`Coefficient`;
m:=1000;
                   Coefficient
                   m:=1000

n - the number of major units
n:=7/3;
                   n := 7/3

l - the number of minor units
l:=;

The result (the desired value)
solve(d);
                   7000/3
evalf(solve(d));
                   2333.333333

That is : there are 2333.3 (or 7000/3 ) minor units in 7/3 major units .

 

Other example

m - shows how many minor units in one major one (coefficient) 
`Coefficient`;
m:=4200;
                   Coefficient
                   m:=4200

n - the number of major units 
n:=;
                 
l - the number of minor units
l:=100;

                  l:=100

The result (the desired value)
solve(d);
                   1/42
evalf(solve(d));
                   0.02380952381

That is : there are 0.02 (or 1/42) major units in 100 minor units .

 

Another example

m - shows how many minor units in one major one (coefficient) 
`Coefficient`;
m:=;
                   Coefficient

n - the number of major units 
n:=2;

                    n := 2
                 
l - the number of minor units
l:=200;

                  l:=200

The result (the desired value)
solve(d);
                   100
evalf(solve(d));
                  100

That is : Coefficient is 100 .

  The geometry of the triangle
  Romanova Elena,  8 class,  school 57, Kazan, Russia

       Construction of triangle and calculation its angles

       Construction of  bisectors
      
       Construction of medians
      
       Construction of altitudes


> restart:with(geometry):      

The setting of the height of the triandle and let's call it "Т"
> triangle(T,[point(A,4,6),point(B,-3,-5),point(C,-4,8)]);

                                  T

        Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);

Construction of the triangle АВС

> draw({T(color=gold,thickness=3)},printtext=true,axes=NONE);     
Calculation of the distance between heights А and В - the length of a side АВ

> d1:=distance(A,B);

                           d1 := sqrt(170)

        
        Calculation of the distance between heights В and С - the length of a side ВС
> d2:=distance(B,C);

                           d2 := sqrt(170)

       The setting of line which passes through two points А and В
> line(l1,[A,B]);

                                  l1

       Display the equation of line l1
> Equation(l1);
> x;
> y;

                         -2 + 11 x - 7 y = 0

        The setting of line which passes through two points А and С
> line(l2,[A,C]);

                                  l2

       Display the equation of line l2
> Equation(l2);
> x;
> y;

                          56 - 2 x - 8 y = 0

         The setting of line which passes through two points В and С
> line(l3,[B,C]);

                                  l3

        Display the equation of line l3
> Equation(l3);
> x;
> y;

                          -44 - 13 x - y = 0

        Check the point А lies on line l1
> IsOnLine(A,l1);

                                 true

        Check the point А lies on line l1
> IsOnLine(B,l1);

                                 true

        Calculation of the andle between lines l1 and l2
> FindAngle(l1,l2);

                              arctan(3)

        The conversion of result to degrees
> b1:=convert(arctan(97/14),degrees);

                                      97
                               arctan(--) degrees
                                      14
                     b1 := 180 ------------------
                                       Pi

        Calculation of decimal value of this angle
> b2:=evalf(b1);

                      b2 := 81.78721981 degrees

        Calculation of the andle between lines l1 and l3
> FindAngle(l1,l3);

                             arctan(3/4)

       The conversion of result to degrees
> b3:=convert(arctan(97/99),degrees);

                                      97
                               arctan(--) degrees
                                      99
                     b3 := 180 ------------------
                                       Pi

        Calculation of decimal value of this angle
> b4:=evalf(b3);

                      b4 := 44.41536947 degrees

       Calculation of the angle between lines l2 and l3
> FindAngle(l2,l3);

                              arctan(3)

       The conversion of  result to degrees
> b5:=convert(arctan(97/71),degrees);

                                      97
                               arctan(--) degrees
                                      71
                     b5 := 180 ------------------
                                       Pi

        Calculation of decimal value of  this angle
> b6:=evalf(b5);

                      b6 := 53.79741070 degrees

        Check the sum of all the angles of the triangle
> b2+b4+b6;

                         180.0000000 degrees

        Analytical information about the point А
> detail(A);
   name of the object: A
   form of the object: point2d
   coordinates of the point: [4, 6]
          Analytical information about the point В
> detail(B);
   name of the object: B
   form of the object: point2d
   coordinates of the point: [-3, -5]
          Analytical information about the point С
> detail(C);
   name of the object: C
   form of the object: point2d
   coordinates of the point: [-4, 8]

   The setting of heights of the triangle points A,B,C and let's call it "Т"

   with(geometry):
> triangle(ABC, [point(A,7,8), point(B,6,-7), point(C,-6,7)]):
        The setting of the bisector of angle А in triandle АВС
> bisector(bA, A, ABC);

                                  bA

        Analytical information about the bisector of angle А in the triandle
> detail(bA);
   name of the object: bA
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (15*170^(1/2)+226^(1/2))*_x+(-13*226^(1/2)-170^(1/2))*_y+97*226^(1/2)-97*170^(1/2) = 0

        Construction of the triangle
> draw(ABC,axes=normal,view=[-8..8,-8..8]);

 Construction of the triangle ABC

> draw({ABC(color=gold,thickness=3)},printtext=true,axes=NONE);     

 Construction of the bisector of angle А

> draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3)},printtext=true,axes=NONE);    

The setting of the bisector of angle В in the triangle АВС

> bisector(bB, B, ABC);

                                  bB

       Analytical information about the bisector of angle B in the triandle
> detail(bB);
   name of the object: bB
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (-15*340^(1/2)-14*226^(1/2))*_x+(-12*226^(1/2)+340^(1/2))*_y+97*340^(1/2) = 0

         Construction of the bisector of angle В
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3)},printtext=true,axes=NONE);    



    The setting of the bisector of angle С in the triangle АВС

> bisector(bC, C, ABC);

                                  bC

        Analytical information about the bisector of angle С in the triangle
> detail(bC);
   name of the object: bC
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (14*170^(1/2)-340^(1/2))*_x+(13*340^(1/2)+12*170^(1/2))*_y-97*340^(1/2) = 0

        Construction of the bisector of angle С
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3)},printtext=true,axes=NONE);  

 Calculation of the point of intersection of the bisectors and let's call it "О"

> intersection(O,bA,bB,bC);coordinates(O);

                                  O


     7 sqrt(85) - 3 sqrt(2) sqrt(113) + 3 sqrt(85) sqrt(2)
  [2 -----------------------------------------------------,
       sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

          -16 sqrt(85) - 7 sqrt(2) sqrt(113) + 7 sqrt(85) sqrt(2)
        - -------------------------------------------------------]
             sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

       Construction of the bisectors and  marking of the point of intersection  "О" in the triandle
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3),O},printtext=true,axes=NONE);
> restart:
> with(geometry):
       The setting of the heights of the triangle points A,B,C and let's call it "Т"
> point(A,7,8),point(B,6,-7),point(C,-6,7);

                               A, B, C

        Let's call "Т1"
> triangle(T1,[A,B,C]);

                                  T1

        Construction of "Т1"
> draw(T1(color=gold,thickness=3),axes=NONE,printtext=true);
  The setting of the median from the point В in the trianglemedian(mB,B,T1,B1);
> median(mb,B,T1);

                                  mB


                                  mb

        Construction of the median from the point В
> draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mb},printtext=true,axes=NONE);

The setting of the median from the point А in the trianglemedian(mA,A,T1,A1);
> median(ma,A,T1);

                                  mA


                                  ma

        Construction of the median from the point А
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),ma},printtext=true,axes=NONE);
The setting of the median from the point С in the trianglemedian(mC,C,T1,C1);
> median(mc,C,T1);

                                  mC


                                  mc

        Costruction of the median from the point С
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=maroon,thickness=3)},printtext=true,axes=NONE);




Calculation of the point of  intersection of the median and let's call it "О"

>intersection(O,ma,mb,mC);coordinates(O);

                                  O


                              [7/3, 8/3]

        Construction of medians and marking of the point of  intersection "О" in the triangle
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=violet,thickness=3),O},printtext=true,axes=NONE);
> restart:with(geometry):
> _EnvHorizontalName:=x:_EnvVerticalName=y:       The setting of the heights of the triangle points A, B, C  and let's call it "Т"
> triangle(T,[point(A,7,8),point(B,6,-7),point(C,-6,7)]);

                                  T

       Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);


The setting of the altitude in the triangle from the point Сaltitude(hC1,C,T,C1);
> altitude(hC,C,T);

                                 hC1


                                  hC

        Analytical information about the altitude hC from the point С in the triangle
> detail(hC);
   name of the object: hC
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -99+_x+15*_y = 0

        Construction of the altitude from the point С
> draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hC},printtext=true,axes=NONE);     

  The setting of the altitude in the triangle from the point Аaltitude(hA1,A,T,A1);
> altitude(hA,A,T);

                                 hA1


                                  hA

        Analytical information about the altitude hA from the point А in the triangle
> detail(hA);
   name of the object: hA
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -28-12*_x+14*_y = 0

        Construction of the altitude from the point А
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hA1},printtext=true,axes=NONE);       The setting of the altitude from the point В

> altitude(hB1,B,T,B1);
> altitude(hB,B,T);

                                 hB1


                                  hB

        Analytical information about the altitude hB from the point В in the triangle
> detail(hB);
   name of the object: hB
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -71+13*_x+_y = 0

        Consruction of the altitude from the point В
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1},printtext=true,axes=NONE);     
 Calculation of the point of intersection of altitudes and let's call it "О"

>intersection(O,hB,hA,hC);coordinates(O);

                                  O


                               483  608
                              [---, ---]
                               97   97

        Construction of altitudes and marking of the point of intersection "О" in the triangle
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1,O},printtext=true,axes=NONE);




 

 

 

 

 

 

 

 

 

 

 

 

 

  Elena, Liya

  "Researching turkish song: the selection of the main element and its graphic transformations",

   Russia, Kazan, school #57

The setting and visualization of the melodic line of the song
> restart:
> with(plots):with(plottools):
> p0:=plot([[0.5,9],[1,7],[2,9],[4,11],[6,9],[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9],[17,7],[18,9]],color=magenta):p1:=plot([[18,9],[20,11],[22,9],[23,11],[24,9],[26,11],[28,11],[29.5,8],[30,11],[32,9],[33.5,8],[34,9],[36,7],[37.5,5],[38,9],[40,7],[42,5],[44,5],[46,4],[47,5],[48,2],[50,4],[51,5],[51.5,4],[52,2],[54,4],[56,4],[56.5,5],[57,4],[58,5],[60,7],[62,5],[64,7],[66,5]],color=cyan):
> p2:=plot([[66,5],[68,5],[69,5],[70,4],[71,5],[71.5,4],[72,2],[73,4],[74,5],[75,7],[76,5],[78,4],[78.5,7],[80,5],[82.5,4],[83.5,4],[84,2],[86,4],[88,4],[90.5,4],[91.5,4]],color=red):
> p3:=plot([[91.5,4],[92,2],[94,4],[96,4],[96.5,9],[97,7],[98,9],[100,11],[100.5,9],[101,11],[102,9],[104,11],[106,9],[108,9],[109,9],[109.5,9],[110,7],[111,9],[112,7],[113,7],[114,9],[116,11],[116.5,9],[117,11],[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9],[126,11],[128,9],[129,7],[130,9],[132,11],[132.5,9],[133,11],[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9],[142,11],[143,7],[143.5,7],[144,9],[144.5,9],[145,7],[146,9],[148,11],[148.5,9],[149,11],[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9],[158,11],[160,9],[161,7],[162,9],[164,11],[164.5,9],[165,11],[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9],[174.5,11],[175,7],[175.5,7],[176,9],[176.5,9],[177,7],[178,9],[180,11],[180.5,9],[181,11],[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9],[190,11],[192,9],[192.5,9],[193,7],[194,9],[196,11],[196.5,9],[197,11],[198,9],[200,11],[201.5,9],[202,11],[203,9],[203.5,8],[204,9],[205,7],[205.5,9],[206,11],[207,9],[208,7],[209,8],[209.5,7],[210,9],[211,7],[212,5],[213,5],[213.5,5],[214,9],[215,7],[216,5],[217,5],[217.5,5],[218,7],[219,5],[220,4],[221,4],[221.5,4],[222,7],[223,5],[224,4],[225,4],[227,4],[227.5,4],[228,2],[230,4]],color=blue):
> p4:=plot([[230,4],[232,4],[232.5,5],[233,4],[234,5],[236,7],[236.5,5],[237,5],[238,9],[240,7],[242.5,5],[244,5],[245,5],[246,4],[246.5,5],[247,4],[248,2],[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4],[258,4]],color=brown):
> p5:=plot([[258,4],[259,4],[260,2]],color=green):
> plots[display](p0,p1,p2,p3,p4,p5,thickness=2);

 

 

The selection of the main melodic element in graph of whole song. The whole song is divided into separate elements - results of transformationss0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> s1:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=blue):
> s2:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue):
> s3:=plot([[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9]],color=blue):
> s4:=plot([[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9]],color=blue):
> s5:=plot([[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9]],color=blue):
> s6:=plot([[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4]],color=blue):
> plots[display](s0,s1,s2,s3,s4,s5,s6);
> s:=plots[display](s0,s1,s2,s3,s4,s5,s6):

 

Animated display of grafical transformation of the basic element (to click on the picture - on the panel of instruments appears player - to play may step by step).m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> pm:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=red,style=line,thickness=4):
> iop:=plots[display](m0,pm,insequence=true):
> plots[display](iop,s0);

> m0_t:=translate(m0,110,0):
> m0_r:=reflect(m0_t,[[0,9],[24,9]]):
> plots[display](m0,m0_r,insequence=true);
> m0r:=plots[display](m0,m0_r,insequence=true):

> pm0:=plots[display](pm,m0):
> plots[display](pm0,m0r);

> m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> pn:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue,thickness=3):
> iop:=plots[display](m0,pn,insequence=true):
> plots[display](iop,s0);

> m0_t1:=translate(m0,126,0):
> m0_r1:=reflect(m0_t1,[[0,9],[24,9]]):
>
> plots[display](m0,m0_r1,insequence=true);
> m0r1:=plots[display](m0,m0_r1,insequence=true):

> pm01:=plots[display](pn,m0):
> plots[display](pm01,m0r1);

 

> pm2:=plots[display](pn,pm,m0):
> plots[display](pm0,m0r,pm01,m0r1);

> pt_i_1:=seq(translate(pm,5*11*i,0),i=0..4):
> plots[display](pt_i_1);

> pm_i:=seq(translate(pm,5*11*i,0),i=0..4):
> plots[display](pm_i);
> iop1:=plots[display](pm_i,insequence=true):
> plots[display](iop1,s0);

 

> pm_i_0:=seq(translate(m0_r,5*11*i,0),i=0..4):
> plots[display](pm_i_0);
> iop2:=plots[display](pm_i_0,insequence=true):
> plots[display](iop2,s0);

 

 

 

 

 

 

Construction of arabesques of melodic line BACH

Elena, Liya "Construction of arabesques of melodic line BACH", Kazan, Russia, school#57
       
> restart:
> with(plots):with(plottools):

      The setting and visualization of line BACH: B - note b-flat, A - note la, C - note do, H - note si.
> p0:=plot([[0,1],[2,0],[4,1.5],[6,1]],thickness=4,color=cyan,scaling=constrained);
>
>   p0 := PLOT(
>
>         CURVES([[0, 1.], [2., 0], [4., 1.500000000000000], [6., 1.]])
>
>         , SCALING(CONSTRAINED), THICKNESS(4), AXESLABELS( ,  ),
>
>         COLOUR(RGB, 0, 1.00000000, 1.00000000),
>
>         VIEW(DEFAULT, DEFAULT))
>
> plots[display](p0);
> r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
> p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

> c1:=circle([0,0],6,color=blue,thickness=2):
> plots[display](c1,p1,scaling=constrained);
> p_c:=plots[display](c1,p1,scaling=constrained):

> pt_i_2:=seq(translate(p1,0,2*6*i),i=0..4):
> plots[display](pt_i_2,scaling=constrained);
> pt_i_22:=seq(translate(p1,0,6*i),i=0..4):
> plots[display](pt_i_22,scaling=constrained);
> pt_i_222:=seq(translate(p1,0,1/2*6*i),i=0..4):
> plots[display](pt_i_222,scaling=constrained);

> pr:=rotate(p1,Pi/8):
> plots[display](pr,scaling=constrained);
> plots[display](p1,pr,scaling=constrained);
> pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
> plots[display](pr_i,scaling=constrained);


> pt_1:=translate(p1,0,2*6):
> pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
> plots[display](pr_1_i,scaling=constrained);
> pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
> plots[display](pr_11_i,scaling=constrained);
> pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
> plots[display](pr_111_i,scaling=constrained);


Elena, Liya "Designing of islamic arabesques", Kazan, Russia, school #57


> restart:
      At the theorem of cosines  c^2 = a^2+b^2-2*a*b*cos(phi);
      In our case  c=a0 ,  a=1 ,  a=b , phi; - acute angle of a rhombus (the tip of the kalam).
      s0 calculated at theorem of  Pythagoras.
     (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a:=1:phi:=Pi/4:
> a0:=sqrt(a^2+a^2-2*a^2*cos(phi));

                       a0 := sqrt(2 - sqrt(2))

> solve((s0^2)/4=a^2-(a0^2)/4,s0);

                sqrt(2 + sqrt(2)), -sqrt(2 + sqrt(2))


      The setting of initial parameters : the size of the tip of the pen-kalam and  depending on its - the main module size - point
       (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a0:=sqrt(2-sqrt(2)):
> s0:=sqrt(2+sqrt(2)):
      Connection the graphical libraries Maple
> with(plots):with(plottools):
      Construction of unit of measure (point) - rhombus - the tip of the kalam
> p0:=plot([[0,0],[a0/2,s0/2],[0,s0],[-a0/2,s0/2],[0,0]],scaling=constrained,color=gold,thickness=3):
> plots[display](p0);

The setting and construction of altitude of alif - the basis of the rules compilation of the proportions      Example, on style naskh altitude of alif amount five points
> p_i:=seq(plot([[0,0+s0*i],[a0/2,s0/2+s0*i],[0,s0+s0*i],[-a0/2,s0/2+s0*i],[0,0+s0*i]],scaling=constrained,color=black),i=0..4):
> pi:=display(p_i):
> plots[display](p_i);
The setting of appropriate circle of diameter, amount altitude of alifd0:=s0+s0*i:
> i:=4:
> d0:=d0:
> c0:=circle([0,d0/2],d0/2,color=blue):
> plots[display](p_i,c0);


Construction of flower by turning "point"r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
> p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

 The setting of circumscribed circlec1:=circle([0,0],s0,color=blue,thickness=2):
      Construction and the setting of flower inscribed in a circle
> plots[display](c1,p1,scaling=constrained);
> p_c:=plots[display](c1,p1,scaling=constrained):

The setting and construction of arabesque by horizontal parallel transport original flower with different stepspt_i_1:=seq(translate(p1,5*a0*i,0),i=0..4):
> plots[display](pt_i_1);
> pt_i_11:=seq(translate(p1,2*a0*i,0),i=0..4):
> plots[display](pt_i_11);
> pt_i_111:=seq(translate(p1,a0*7*i,0),i=0..4):
> plots[display](pt_i_111);

 The setting and construction of arabesque by vertical parallel transport original flower with different stepspt_i_2:=seq(translate(p1,0,2*s0*i),i=0..4):
> plots[display](pt_i_2);
> pt_i_22:=seq(translate(p1,0,s0*i),i=0..4):
> plots[display](pt_i_22);
> pt_i_222:=seq(translate(p1,0,1/2*s0*i),i=0..4):
> plots[display](pt_i_222);
 Getting arabesques by turning original flower on different anglespr:=rotate(p1,Pi/8):
> plots[display](pr);
> plots[display](p1,pr);

> pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
> plots[display](pr_i);


> pt_1:=translate(p1,0,2*s0):
> pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
> plots[display](pr_1_i);
> pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
> plots[display](pr_11_i);
> pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
> plots[display](pr_111_i);


Construction of standard quadrilaterals

      Muchametshina Liya,  8th class,  school № 57, Kazan, Russia


                   Square

                  Rectangle     
                  
                  Rhombus        
 
                  Parallelogram

                   Trapeze

Construction of square

> restart:
> with(plottools):
       Сoordinates (x;y) of the lower left corner of the square and the side "а"
> x:=0;y:=3;a:=6;

                                x := 0


                                y := 3


                                a := 6

      Construction of the square
> P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
> plots[display](P1,scaling=CONSTRAINED);

The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
> plots[display](P1,P2,scaling=CONSTRAINED);

Construction of rectangle

> restart:
> with(plottools):
        Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
> x:=0;y:=2;a:=3;b:=9;
>

                                x := 0


                                y := 2


                                a := 3


                                b := 9

       The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
> l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
> plots[display](l,scaling=CONSTRAINED,thickness=4);
Construction of rhombus

> restart:
> with(plottools):
      The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
> x:=0;y:=2;a:=3;b:=4;

                                x := 0


                                y := 2


                                a := 3


                                b := 4

       Rhombus is specified by the sequence of vertices with the values "a" and "b"
> ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
> plots[display](ll,scaling=CONSTRAINED,thickness=4);

Construction of parallelogram

> restart:
> with(plottools):
      (х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
> x:=0;y:=0;i:=4;j:=5;a:=10;

                                x := 0


                                y := 0


                                i := 4


                                j := 5


                               a := 10

     The parallelogram is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
 If  i= 0  it turns out the rectangleget.
       If  j= а  it turns out the  square.
       If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

Construction of trapeze

Trapeze general form
> restart:
> with(plottools):
>
        (х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
> x:=0;y:=2;i:=1;j:=5;a:=11;

                                x := 0


                                y := 2


                                i := 1


                                j := 5


                               a := 11

         The trapez is defined by the sequence of vertices     
> P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Rectangular trapezoid
> restsrt:
> with(plottools):
> x:=0;y:=2;i:=0;j:=6;a:=11;

                                x := 0


                                y := 2


                                i := 0


                                j := 6


                               a := 11

> P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Isosceles trapezoid
> restart:
> with(plottools):
> x:=0;y:=2;i:=4;j:=6;a:=15;

                                x := 0


                                y := 2


                                i := 4


                                j := 6


                               a := 15

> P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);



 

 

 

> restart;
> a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

 

restart:
with(plots):
y=sin(x);
p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
plots[display](p);

 

y=sin(3*x);
p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p1);
y=sin(1/3*x);
p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p11);

 

 

y=2*sin(x);
p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p2);
y=1/2*sin(x);
p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p22);

 

y=2+sin(x);
p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p3);
y=sin(x)-2;
p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p33);

y=sin(x+2);
p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p4);
y=sin(x-2);
p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p44);

y=-sin(x);
p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p7);
y=sin(-x);
p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p77);

 

y=abs(sin(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p00,p5);
plots[display](p5,scaling=constrained);

y=sin(abs(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p00,p6);
plots[display](p6,scaling=constrained);

 

 

Post gialid_GEODROMchik - what is this?

Pilot project of Secondary school # 57 of Kazan, Russia

Use of Maple

in Mathematics Education by mathematics teacher Alsu Gibadullina

and in scientific work of schoolchildren

 

Examples made using the Maple

the 6th class

 

              Arina                         Elza                             David    

       

       Book.mws              Kolobok.mws               sn_angl.mws

 

         Artur    

 

 

This is the second of three blog posts about working with data sets in Maple.

In my previous post, I discussed how to use Maple to access a large number of data sets from Quandl, an online data aggregator. In this post, I’ll focus on exploring built-in data sets in Maple.

Data is being generated at an ever increasing rate. New data is generated every minute, adding to an expanding network of online information. Navigating through this information can be daunting. Simply preparing a tabular data set that collects information from several sources is often a difficult and time consuming effort. For example, even though the example in my previous post only required a couple of lines of Maple code to merge 540 different data sets from various sources, the effort to manually search for and select sources for data took significantly more time.

In an attempt to make the process of finding data easier, Maple’s built-in country data set collects information on country-specific variables including financial and economic data, as well as information on country codes, population, area, and more.

The built-in database for Country data can be accessed programmatically by creating a new DataSets Reference:

CountryData := DataSets:-Reference( "builtin", "country" );

This returns a Reference object, which can be further interrogated. There are several commands that are applicable to a DataSets Reference, including the following exports for the Reference object:

exports( CountryData, static );

The list of available countries in this data set is given using the following:

GetElementNames( CountryData );

The available data for each of these countries can be found using:

GetHeaders( CountryData );

There are many different data sets available for country data, 126 different variables to be exact. Similar to Maple’s DataFrame, the columns of information in the built-in data set can be accessed used the labelled name.

For example, the three-letter country codes for each country can be returned using:

CountryData[.., "3 Letter Country Code"];

The three-letter country code for Denmark is:

CountryData["Denmark", "3 Letter Country Code"];

Built-in data can also be queried in a similar manner to DataFrames. For example, to return the countries with a population density less than 3%:

pop_density := CountryData[ .., "Population Density" ]:
pop_density[ `Population Density` < 3 ];

At this time, Maple’s built-in country data collection contains 126 data sets for 185 countries. When I built the example from my first post, I knew exactly the data sets that I wanted to use and I built a script to collect these into a larger data container. Attempting a similar task using Maple’s built-in data left me with the difficult decision of choosing which data sets to use in my next example.

So rather than choose between these available options, I built a user interface that lets you quickly browse through all of Maple’s collection of built-in data.

Using a couple of tricks that I found in the pages for Programmatic Content Generation, I built the interface pictured above. (I’ll give more details on the method that I used to construct the interface in my next post.)

This interface allows you to select from a list of countries, and visualize up to three variables of the country data with a BubblePlot. Using the preassigned defaults, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product. The BubblePlot visualization also adds a third dimension of information by adjusting the bubble size according to the relative population compared with the other selected countries.

Now you may notice that the list of available data sets is longer than the list of available options in each of the selection boxes. In order to be able to generate BubblePlot animations, I made an arbitrary choice to filter out any of the built-in data sets that were not of type TimeSeries. This is something that could easily be changed in the code. The choice of a BubblePlot could also be updated to be any other type of Statistical visualization with some additional modifications.

You can download a copy of this application here: VisualizingCountryDataSets.mw

You can also interact with it via the MapleCloud: http://maplecloud.maplesoft.com/application.jsp?appId=5743882790764544

I’ll be following up this post with an in-depth post on how I authored the country selector interface using programmatic content generation.

Since it's not every day we receive submission to the Maple Application Center that have words like "quantum entanglement" (and "teleportation"!) in the title, I thought I'd share this one:

Matrix Representation of Quantum Entangled States: Understanding Bell's Inequality and Teleportation

 

eithne

Greetings to all. I am writing today to share a personal story / exploration using Maple of an algorithm from the history of combinatorics. The problem here is to count the number of strings over a certain alphabet which consist of some number of letters and avoid a set of patterns (these patterns are strings as opposed to regular expressions.) This counting operation is carried out using rational generating functions that encode the number of admissible strings of length n in the coefficients of their series expansions. The modern approach to this problem uses the Goulden-Jackson method which is discussed, including a landmark Maple implementation from a paper by D. Zeilberger and J. Noonan, at the following link at math.stackexchange.com (Goulden-Jackson has its own website, all the remaining software described in the following discussion is available at the MSE link.) The motivation for this work was a question at the MSE link about the number of strings over a two-letter alphabet that avoid the pattern ABBA.

As far as I know before Goulden-Jackson was invented there was the DFA-Method (Deterministic Finite Automaton also known as FSM, Finite State Machine.) My goal in this contribution was to study and implement this algorithm in order to gain insight about its features and how it influenced its powerful successor. It goes as follows for the case of a single pattern string: compute a DFA whose states represent the longest prefix of the pattern seen at the current position in the string as it is being scanned by the DFA, with the state for the complete pattern doubling as a final absorbing state, since the pattern has been seen. Translate the transitions of the DFA into a system of equations in the generating functions representing strings ending with a given maximal prefix of the pattern, very much like Markov chains. Finally solve the system of equations for the generating functions and thus obtain the sequence of values of strings of length n over the given alphabet that avoid the given pattern.

I have also implemented the DFA method for sets of patterns as opposed to just one pattern. The algorithm is the same except that the DFA does not consist of a chain with backlinks as in the case of a single pattern but a tree of prefixes with backlinks to nodes higher up in the tree. The nodes in the tree represent all prefixes that need to be tracked where obviously a common prefix between two or more patterns is shared i.e. only represented once. The DFA transitions emanating from nodes that are leaves represent absorbing states indicating that one of the patterns has been seen. We run this algorithm once it has been verified that the set of patterns does not contain pairs of patterns where one pattern is contained in another, which causes the longer pattern to be eliminated at the start. (Obviously if the shorter pattern is forbidden the so is the longer.) The number of states of the DFA here is bounded above by the sum of the lengths of the patterns with subpatterns eliminated. The uniqueness property of shared common prefixes holds for subtrees of the main tree i.e. recursively. (The DFA method also copes easily with patterns that have to occur in a certain order.)

I believe the Maple code that I provide here showcases many useful tricks and techniques and can help the reader advance in their Maple studies, which is why I am alerting you to the web link at MSE. I have deliberately aimed to keep it compatible with older versions of Maple as many of these are still in use in various places. The algorithm really showcases the power of Maple in combinatorics computing and exploits many different aspects of the software from the solution of systems of equations in rational generating functions to the implementation of data structures from computer science like trees. Did you know that Maple permits nested procedures as known to those who have met Lisp and Scheme during their studies? The program also illustrates the use of unit testing to detect newly introduced flaws in the code as it evolves in the software life cycle.

Enjoy and may your Maple skills profit from the experience!

Best regards,

Marko Riedel

The software is also available here: dfam-mult.txt

     Example of the equidistant surface at a distance of 0.25 to the surface
x3
-0.1 * (sin (4 * x1) + sin (3 * x2 + x3) + sin (2 * x2)) = 0
Constructed on the basis of universal parameterization of surfaces.

equidistant_surface.mw 


Hi there, fellow primers, it's good to be back after almost 5 years! I just want to share a worksheet on Numerov's algorithm in Maple using procedures as I've recently found out that google could not find any Maple procedure that implements Numerov's algorithm to solve ODEs.   numerov.mw   Reference.pdf 

This is the first of three blog posts about working with data sets in Maple.

In 2013, I wrote a library for Maple that used the HTTP package to access the Quandl data API and import data sets into Maple. I was motivated by the fact that, when I was downloading data, I often used multiple data sources, manually updated data when updates were available, and cleaned or manipulated the data into a standardized form (which left me spending too much time on the data acquisition step).

Simply put, I needed a source for data that would provide me with a searchable, stable data API, which would also return data in a form that did not require too much post-processing.

My initial library had really just scratched the surface of what was possible.

Maple 2015 introduced the new DataSets package, which fully integrated a data set search into core library routines and made its functionality more discoverable through availability in Maple’s search bar.

Accessing online data suddenly became much easier. From within Maple, I could now search through over 12 million time series data sets provided by Quandl, and then automatically import the data into a format that I could readily work with.

If you’re not already aware of this online service, Quandl is an online data aggregator that delivers a wide variety of high quality financial and economic data. This includes the latest data on stocks and commodities, exchange rates, and macroeconomic indicators such as population, inflation, unemployment, and so on. Quandl collects both open and proprietary data sets from many sources, such as the US Federal Reserve System, OECD, Eurostat, The World Bank, and Open Data for Africa. Best of all, Quandl's powerful API is free to use.

One of the first examples for the DataSets package that I constructed was in part based on the inspirational work of Hans Rosling. I was drawn in by his ability to use statistical visualizations to break down complex multidimensional data sets and provide insight into underlying patterns; a key example investigating the correlation between rising incomes and life expectancy.

As well as online data, the DataSets package had a database for country data. Hence it seemed fitting to add an example that explored macroeconomic indicators for several countries. Accordingly, I set out to create an example that visualized variables such as Gross Domestic Product, Life Expectancy, and Population for a collection of countries.

I’ll now describe how I constructed this application.

The three key variables are Gross Domestic Product at Power Purchasing Parity, Life Expectancy, and Population. Having browsed through Quandl’s website for available data sets, the World Bank and Open Data for Africa projects seemingly had the most available relevant data; therefore I chose these as my data sources.

Pulling data for a single country from one of these sources was pretty straight forward. For example, the DataSets Reference for the Open Data for Africa data set on GDP at PPP for Canada is:

DataSets:-Reference("quandl", "ODA/CAN_PPPPC"));

In this command, the second argument is the Quandl data set code. If you are on Quandl’s website, this is listed near the top of the data set page as well as in the last few characters of the web address itself: https://www.quandl.com/data/ODA/CAN_PPPPC . Deconstructing the code, “ODA” stands for Open Data for Africa and the rest of the string is constructed from the three letter country code for Canada, “CAN”, and the code for the GDP and PPP. Looking at a small sample of other data set codes, I theorized that both of the data sources used a standardized data set name that included the ISO-3166 3-letter country code for available data sets. Based on this theory, I created a simple script to query for available data and discovered that there was data available for many countries using this standardized code. However, not every country had available data, so I needed to filter my list somewhat in order to pick only those countries for which information was available.

The script that I had constructed required three letter country codes. In order to test all available countries, I created a table to house the country names and three-letter country codes using data from the built-in database for countries:

ccdata := DataSets:-Builtin:-Reference("country")[.., "3 Letter Country Code"];
cctable := table([seq(op(GetElementNames(ccdata[i])) = ccdata[i, "3 Letter Country Code"], 
i = 1 .. CountRows(ccdata))]):

My script filtered this table, returning a subset of the original table, something like:

Countries := table( [“Canada” = “CAN”, “Sweden” = “SWE”, … ] );

You can see the filtered country list in the code edit region of the application below.

With this shorter list of countries, I was now ready to download some data. I created three vectors to hold the data sets by mapping in the DataSets Reference onto the “standardized” data set names that I pulled from Quandl. Here’s the first vector for the data on GDP at PPP.

V1 := Vector( [ (x) -> Reference("quandl", cat("ODA/", x, "_PPPPC"))
                   ~([entries(Countries, nolist, indexorder)])]):
#Open Data for Africa GDP at PPP

Having created three data vectors consisting of 180 x 3 = 540 data sets, I was finally ready to visualize the large set of data that I had amassed.

In Maple’s Statistics package, BubblePlots can use the horizontal axis, vertical axis and the relative bubble size to illustrate multidimensional information. Moreover, if incoming data is stored as a TimeSeries object, BubblePlots can generate animations over a common period of time.

Putting all of this together generated the following animation for 180 available countries.

This example will be included with the next version of Maple, but for now, you can download a copy here:DataSetsBubblePlot.mw

*Note: if you try this application at home, it will download 540 data sets. This operation plus the additional BubblePlot construction can take some time, so if you just want to see the finished product, you can simply interact with the animation in the Maple worksheet using the animation toolbar.

A more advanced example that uses multiple threads for data download can be seen at the bottom of the following page: https://www.maplesoft.com/products/maple/new_features/maple19/datasets_maple2015.pdf You can also interact with this example in Maple by searching for: ?updates,Maple2015,DataSets

In my next post, I’ll discuss how I used programmatic content generation to construct an interactive application for data retrieval.

First 39 40 41 42 43 44 45 Last Page 41 of 77