Education

Teaching and learning about math, Maple and MapleSim
 

Feynman Diagrams
The scattering matrix in coordinates and momentum representation

  

Mathematical methods for particle physics was one of the weak spots in the Physics package. There existed a FeynmanDiagrams command, but its capabilities were too minimal. People working in the area asked for more functionality. These diagrams are the cornerstone of calculations in particle physics (collisions involving from the electron to the Higgs boson), for example at the CERN. As an introduction for people curious, not working in the area, see "Why Feynman Diagrams are so important".

  

This post is thus about a new development in Physics: a full rewriting of the FeynmanDiagrams command, now including a myriad of new capabilities (mainly a. b. and c. in the Introduction), reversing the previous status of things entirely. This is work in collaboration with Davide Polvara from Durham University, Centre for Particle Theory.

  


The complexity of this material is high, so the introduction to the presentation below is as brief as it can get, emphasizing the examples instead. This material is reproducible in Maple 2019.2 after installing the Physics Updates, v.598 or higher.

  

 

  

At the end they are attached the worksheet corresponding to this presentation and a PDF version of it, as well as the new FeynmanDiagrams help page with all the explanatory details.

Introduction

  

A scattering matrix S relates the initial and final states, `#mfenced(mrow(mo("⁢"),mi("i"),mo("⁢")),open = "|",close = "⟩")` and `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢")),open = "|",close = "⟩")`, of an interacting system. In an 4-dimensional spacetime with coordinates X, S can be written as:

S = T(exp(i*`#mrow(mo("∫"),mi("L"),mo("⁡"),mfenced(mi("X")),mo("ⅆ"),msup(mi("X"),mn("4")))`))

  

where i is the imaginary unit  and L is the interaction Lagrangian, written in terms of quantum fields  depending on the spacetime coordinates  X. The T symbol means time-ordered. For the terminology used in this page, see for instance chapter IV, "The Scattering Matrix", of ref.[1] Bogoliubov, N.N., and Shirkov, D.V. Quantum Fields.

  

This exponential can be expanded as

S = 1+S[1]+S[2]+S[3]+`...`

  

where

S[n] = `#mrow(mo("⁡"),mfrac(msup(mi("i"),mi("n")),mrow(mi("n"),mo("!")),linethickness = "1"),mo("⁢"),mo("∫"),mi("…"),mo("⁢"),mo("∫"),mi("T"),mo("⁡"),mfenced(mrow(mi("L"),mo("⁡"),mfenced(mi("\`X__1\`")),mo(","),mi("…"),mo(","),mi("L"),mo("⁡"),mfenced(mi("\`X__n\`")))),mo("⁢"),mo("ⅆ"),msup(mi("\`X__1\`"),mn("4")),mo("⁢"),mi("…"),mo("⁢"),mo("ⅆ"),msup(mi("\`X__n\`"),mn("4")))`

  

and T(L(X[1]), `...`, L(X[n])) is the time-ordered product of n interaction Lagrangians evaluated at different points. The S matrix formulation is at the core of perturbative approaches in relativistic Quantum Field Theory.

  

In connection, the FeynmanDiagrams  command has been rewritten entirely for Maple 2020. In brief, the new functionality includes computing:

a. 

The expansion S = 1+S[1]+S[2]+S[3]+`...` in coordinates representation up to arbitrary order (the limitation is now only your hardware)

b. 

The S-matrix element `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")` in momentum representation up to arbitrary order for given number of loops and initial and final particles (the contents of the `#mfenced(mrow(mo("⁢"),mi("i"),mo("⁢")),open = "|",close = "⟩")` and `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢")),open = "|",close = "⟩")` states); optionally, also the transition probability density, constructed using the square of the scattering matrix element abs(`#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")`)^2, as shown in formula (13) of sec. 21.1 of ref.[1].

c. 

The Feynman diagrams (drawings) related to the different terms of the expansion of S or of its matrix elements `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")`.

  

Interaction Lagrangians involving derivatives of fields, typically appearing in non-Abelian gauge theories, are also handled, and several options are provided enabling restricting the outcome in different ways, regarding the incoming and outgoing particles, the number of loops, vertices or external legs, the propagators and normal products, or whether to compute tadpoles and 1-particle reducible terms.

 

Examples

 

For illustration purposes set three coordinate systems , and set phi to represent a quantum operator

with(Physics)

Setup(mathematicalnotation = true, coordinates = [X, Y, Z], quantumoperators = phi)

`Systems of spacetime coordinates are:`*{X = (x1, x2, x3, x4), Y = (y1, y2, y3, y4), Z = (z1, z2, z3, z4)}

 

_______________________________________________________

 

[coordinatesystems = {X, Y, Z}, mathematicalnotation = true, quantumoperators = {phi}]

(1.1)

Let L be the interaction Lagrangian

L := lambda*phi(X)^4

lambda*Physics:-`^`(phi(X), 4)

(1.2)

The expansion of S in coordinates representation, computed by default up to order = 3 (you can change that using the option order = n), by definition containing all possible configurations of external legs, displaying the related Feynman Diagrams, is given by

%eval(S, `=`(order, 3)) = FeynmanDiagrams(L, diagrams)

 

 

 

%eval(S, order = 3) = 1+%FeynmanIntegral(lambda*_GF(_NP(phi(X), phi(X), phi(X), phi(X))), [[X]])+%FeynmanIntegral(16*lambda^2*_GF(_NP(phi(X), phi(X), phi(X), phi(Y), phi(Y), phi(Y)), [[phi(X), phi(Y)]])+96*lambda^2*_GF(_NP(phi(X), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Y)], [phi(X), phi(Y)]])+72*lambda^2*_GF(_NP(phi(X), phi(X), phi(Y), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Y)]]), [[X], [Y]])+%FeynmanIntegral(1728*lambda^3*_GF(_NP(phi(X), phi(X), phi(Y), phi(Y), phi(Z), phi(Z)), [[phi(X), phi(Z)], [phi(X), phi(Y)], [phi(Z), phi(Y)]])+2592*lambda^3*_GF(_NP(phi(X), phi(X), phi(Y), phi(Y)), [[phi(X), phi(Z)], [phi(X), phi(Z)], [phi(Z), phi(Y)], [phi(Z), phi(Y)]])+10368*lambda^3*_GF(_NP(phi(X), phi(Y), phi(Z), phi(Z)), [[phi(X), phi(Y)], [phi(X), phi(Y)], [phi(X), phi(Z)], [phi(Y), phi(Z)]])+10368*lambda^3*_GF(_NP(phi(X), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]])+3456*lambda^3*_GF(_NP(phi(X), phi(X)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]])+576*lambda^3*_GF(_NP(phi(X), phi(X), phi(X), phi(Y), phi(Y), phi(Z), phi(Z), phi(Z)), [[phi(X), phi(Y)], [phi(Y), phi(Z)]]), [[X], [Y], [Z]])

(1.3)


The expansion of S  in coordinates representation to a specific order shows in a compact way the topology of the underlying Feynman diagrams. Each integral is represented with a new command, FeynmanIntegral , that works both in coordinates and momentum representation. To each term of the integrands corresponds a diagram, and the correspondence is always clear from the symmetry factors.

In a typical situation, one wants to compute a specific term, or scattering process, instead of the S matrix up to some order with all possible configurations of external legs. For example, to compute only the terms of this result that correspond to diagrams with 1 loop use numberofloops = 1 (for tree-level, use numerofloops = 0)

%eval(S, [`=`(order, 3), `=`(loops, 1)]) = FeynmanDiagrams(L, numberofloops = 1, diagrams)

%eval(S, [order = 3, loops = 1]) = %FeynmanIntegral(72*lambda^2*_GF(_NP(phi(X), phi(X), phi(Y), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Y)]]), [[X], [Y]])+%FeynmanIntegral(1728*lambda^3*_GF(_NP(phi(X), phi(X), phi(Y), phi(Y), phi(Z), phi(Z)), [[phi(X), phi(Z)], [phi(X), phi(Y)], [phi(Z), phi(Y)]]), [[X], [Y], [Z]])

(1.4)


In the result above there are two terms, with 4 and 6 external legs respectively.

A scattering process with matrix element `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")` in momentum representation, corresponding to the term with 4 external legs (symmetry factor = 72), could be any process where the total number of incoming + outgoing parties is equal to 4. For example, one with 2 incoming and 2 outgoing particles. The transition probability for that process is given by

`#mfenced(mrow(mo("⁢"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo(",",mathcolor = "olive"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo(",",mathcolor = "olive"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo("⁢",mathcolor = "olive")),open = "⟨",close = "⟩")` = FeynmanDiagrams(L, incomingparticles = [phi, phi], outgoingparticles = [phi, phi], numberofloops = 1, diagrams)

 

`#mfenced(mrow(mo("⁢"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo(",",mathcolor = "olive"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo(",",mathcolor = "olive"),mi("φ",fontstyle = "normal",mathcolor = "olive"),mo("⁢",mathcolor = "olive")),open = "⟨",close = "⟩")` = %FeynmanIntegral((9/8)*lambda^2*Dirac(-P__3-P__4+P__1+P__2)/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1-P__2-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])+%FeynmanIntegral((9/8)*lambda^2*Dirac(-P__3-P__4+P__1+P__2)/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+P__3-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])+%FeynmanIntegral((9/8)*lambda^2*Dirac(-P__3-P__4+P__1+P__2)/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+P__4-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])

(1.5)

When computing in momentum representation, only the topology of the corresponding Feynman diagrams is shown (i.e. the diagrams associated to the corresponding Feynman integral in coordinates representation).

The transition matrix element `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")` is related to the transition probability density dw (formula (13) of sec. 21.1 of ref.[1]) by

dw = (2*Pi)^(3*s-4)*n__1*`...`*n__s*abs(F(p[i], p[f]))^2*delta(sum(p[i], i = 1 .. s)-(sum(p[f], f = 1 .. r)))*` d `^3*p[1]*` ...`*`d `^3*p[r]

where n__1*`...`*n__s represent the particle densities of each of the s particles in the initial state `#mfenced(mrow(mo("⁢"),mi("i"),mo("⁢")),open = "|",close = "⟩")`, the delta (Dirac) is the expected singular factor due to the conservation of the energy-momentum and the amplitude F(p[i], p[f])is related to `#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")` via

`#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")` = F(p[i], p[f])*delta(sum(p[i], i = 1 .. s)-(sum(p[f], f = 1 .. r)))

To directly get the probability density dw instead of`#mfenced(mrow(mo("⁢"),mi("f"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("i"),mo("⁢")),open = "⟨",close = "⟩")`use the option output = probabilitydensity

FeynmanDiagrams(L, incomingparticles = [phi, phi], outgoingparticles = [phi, phi], numberofloops = 1, output = probabilitydensity)

Physics:-FeynmanDiagrams:-ProbabilityDensity(4*Pi^2*%mul(n[i], i = 1 .. 2)*abs(F)^2*Dirac(-P__3-P__4+P__1+P__2)*%mul(dP_[f]^3, f = 1 .. 2), F = %FeynmanIntegral((9/8)*lambda^2/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1-P__2-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])+%FeynmanIntegral((9/8)*lambda^2/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+P__3-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])+%FeynmanIntegral((9/8)*lambda^2/(Pi^6*(E__1*E__2*E__3*E__4)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+P__4-p__2)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]]))

(1.6)

In practice, the most common computations involve processes with 2 or 4 external legs. To restrict the expansion of the scattering matrix in coordinates representation to that kind of processes use the numberofexternallegs option. For example, the following computes the expansion of S up to order = 3, restricting the outcome to the terms corresponding to diagrams with only 2 external legs

%eval(S, [`=`(order, 3), `=`(legs, 2)]) = FeynmanDiagrams(L, numberofexternallegs = 2, diagrams)

%eval(S, [order = 3, legs = 2]) = %FeynmanIntegral(96*lambda^2*_GF(_NP(phi(X), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Y)], [phi(X), phi(Y)]]), [[X], [Y]])+%FeynmanIntegral(3456*lambda^3*_GF(_NP(phi(X), phi(X)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]])+10368*lambda^3*_GF(_NP(phi(X), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]]), [[X], [Y], [Z]])

(1.7)


This result shows two Feynman integrals, with respectively 2 and 3 loops, the second integral with two terms. The transition probability density in momentum representation for a process related to the first integral (1 term with symmetry factor = 96) is then

FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 2, diagrams, output = probabilitydensity)

Physics:-FeynmanDiagrams:-ProbabilityDensity((1/2)*%mul(n[i], i = 1 .. 1)*abs(F)^2*Dirac(-P__2+P__1)*%mul(dP_[f]^3, f = 1 .. 1)/Pi, F = %FeynmanIntegral(%FeynmanIntegral(((3/8)*I)*lambda^2/(Pi^7*(E__1*E__2)^(1/2)*(p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__3^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1-p__2-p__3)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]]), [[p__3]]))

(1.8)

In the above, for readability, the contracted spacetime indices in the square of momenta entering the amplitude F (as denominators of propagators) are implicit. To make those indices explicit, use the option putindicesinsquareofmomentum

F = FeynmanDiagrams(L, incoming = [phi], outgoing = [phi], numberofloops = 2, indices)

`* Partial match of  '`*indices*`' against keyword '`*putindicesinsquareofmomentum*`' `

 

F = %FeynmanIntegral(%FeynmanIntegral(((3/8)*I)*lambda^2*Dirac(-P__2[`~kappa`]+P__1[`~kappa`])/(Pi^7*(E__1*E__2)^(1/2)*(p__2[mu]*p__2[`~mu`]-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__3[nu]*p__3[`~nu`]-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1[beta]-p__2[beta]-p__3[beta])*(-P__1[`~beta`]-p__2[`~beta`]-p__3[`~beta`])-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]]), [[p__3]])

(1.9)

This computation can also be performed to higher orders. For example, with 3 loops, in coordinates and momentum representations, corresponding to the other two terms and diagrams in (1.7)

%eval(S[3], [`=`(legs, 2), `=`(loops, 3)]) = FeynmanDiagrams(L, legs = 2, loops = 3)

`* Partial match of  '`*legs*`' against keyword '`*numberoflegs*`' `

 

`* Partial match of  '`*loops*`' against keyword '`*numberofloops*`' `

 

%eval(S[3], [legs = 2, loops = 3]) = %FeynmanIntegral(3456*lambda^3*_GF(_NP(phi(X), phi(X)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]])+10368*lambda^3*_GF(_NP(phi(X), phi(Y)), [[phi(X), phi(Y)], [phi(X), phi(Z)], [phi(X), phi(Z)], [phi(Y), phi(Z)], [phi(Y), phi(Z)]]), [[X], [Y], [Z]])

(1.10)

A corresponding S-matrix element in momentum representation:

%eval(%Bracket(phi, S[3], phi), `=`(loops, 3)) = FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 3)

%eval(%Bracket(phi, S[3], phi), loops = 3) = %FeynmanIntegral(%FeynmanIntegral(%FeynmanIntegral((9/32)*lambda^3*Dirac(-P__2+P__1)/(Pi^11*(E__1*E__2)^(1/2)*(p__3^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__4^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__5^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-p__3-p__4-p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+P__2+p__3+p__4+p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__3]]), [[p__4]]), [[p__5]])+2*%FeynmanIntegral(%FeynmanIntegral(%FeynmanIntegral((9/32)*lambda^3*Dirac(-P__2+P__1)/(Pi^11*(E__1*E__2)^(1/2)*(p__3^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__4^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__5^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-p__3-p__4-p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+p__4+p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__3]]), [[p__4]]), [[p__5]])+%FeynmanIntegral(%FeynmanIntegral((1/2048)*lambda*Dirac(-P__2+P__1)*%FeynmanIntegral(576*lambda^2/((p__2^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-p__2-p__4-p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])/(Pi^11*(E__1*E__2)^(1/2)*(p__4^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*(p__5^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((-P__1+p__4+p__5)^2-m__phi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__4]]), [[p__5]])

(1.11)

Consider the interaction Lagrangian of Quantum Electrodynamics (QED). To formulate this problem on the worksheet, start defining the vector field A[mu].

Define(A[mu])

`Defined objects with tensor properties`

 

{A[mu], Physics:-Dgamma[mu], P__1[mu], P__2[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], p__1[mu], p__2[mu], p__3[mu], p__4[mu], p__5[mu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X), Physics:-SpaceTimeVector[mu](Y), Physics:-SpaceTimeVector[mu](Z)}

(1.12)

Set lowercase Latin letters from i to s to represent spinor indices (you can change this setting according to your preference, see Setup ), also the (anticommutative) spinor field will be represented by psi, so set psi as an anticommutativeprefix, and set A and psi as quantum operators

Setup(spinorindices = lowercaselatin_is, anticommutativeprefix = psi, op = {A, psi})

`* Partial match of  '`*op*`' against keyword '`*quantumoperators*`' `

 

_______________________________________________________

 

[anticommutativeprefix = {psi}, quantumoperators = {A, phi, psi}, spinorindices = lowercaselatin_is]

(1.13)

The matrix indices of the Dirac matrices  are written explicitly and use conjugate  to represent the Dirac conjugate conjugate(psi[j])

L__QED := alpha*conjugate(psi[j](X))*Dgamma[mu][j, k]*psi[k](X)*A[mu](X)

alpha*Physics:-`*`(conjugate(psi[j](X)), psi[k](X), A[mu](X))*Physics:-Dgamma[`~mu`][j, k]

(1.14)

Compute S[2], only the terms with 4 external legs, and display the diagrams: all the corresponding graphs have no loops

%eval(S[2], `=`(legs, 4)) = FeynmanDiagrams(L__QED, numberofvertices = 2, numberoflegs = 4, diagrams)

%eval(S[2], legs = 4) = %FeynmanIntegral(-2*alpha^2*Physics:-Dgamma[`~mu`][j, k]*Physics:-Dgamma[`~alpha`][i, l]*_GF(_NP(psi[k](X), A[mu](X), conjugate(psi[i](Y)), A[alpha](Y)), [[psi[l](Y), conjugate(psi[j](X))]])+alpha^2*Physics:-Dgamma[`~mu`][j, k]*Physics:-Dgamma[`~alpha`][i, l]*_GF(_NP(conjugate(psi[j](X)), psi[k](X), conjugate(psi[i](Y)), psi[l](Y)), [[A[mu](X), A[alpha](Y)]]), [[X], [Y]])

(1.15)

The same computation but with only 2 external legs results in the diagrams with 1 loop that correspond to the self-energy of the electron and the photon (page 218 of ref.[1])

%eval(S[2], `=`(legs, 2)) = FeynmanDiagrams(L__QED, numberofvertices = 2, numberoflegs = 2, diagrams)

 

 

%eval(S[2], legs = 2) = %FeynmanIntegral(-2*alpha^2*Physics:-Dgamma[`~mu`][j, k]*Physics:-Dgamma[`~alpha`][i, l]*_GF(_NP(psi[k](X), conjugate(psi[i](Y))), [[A[mu](X), A[alpha](Y)], [psi[l](Y), conjugate(psi[j](X))]])-alpha^2*Physics:-Dgamma[`~mu`][j, k]*Physics:-Dgamma[`~alpha`][i, l]*_GF(_NP(A[mu](X), A[alpha](Y)), [[psi[l](Y), conjugate(psi[j](X))], [psi[k](X), conjugate(psi[i](Y))]]), [[X], [Y]])

(1.16)

where the diagram with two spinor legs is the electron self-energy. To restrict the output furthermore, for example getting only the self-energy of the photon, you can specify the normal products you want:

%eval(S[2], [`=`(legs, 2), `=`(products, _NP(A, A))]) = FeynmanDiagrams(L__QED, numberofvertices = 2, numberoflegs = 2, normalproduct = _NP(A, A))

`* Partial match of  '`*normalproduct*`' against keyword '`*normalproducts*`' `

 

%eval(S[2], [legs = 2, products = _NP(A, A)]) = %FeynmanIntegral(alpha^2*Physics:-Dgamma[`~mu`][j, k]*Physics:-Dgamma[`~alpha`][i, l]*_GF(_NP(A[mu](X), A[alpha](Y)), [[conjugate(psi[j](X)), psi[l](Y)], [psi[k](X), conjugate(psi[i](Y))]]), [[X], [Y]])

(1.17)

The corresponding S-matrix elements in momentum representation

`#mfenced(mrow(mo("⁢"),mi("ψ",fontstyle = "normal"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("ψ",fontstyle = "normal"),mo("⁢")),open = "⟨",close = "⟩")` = FeynmanDiagrams(L__QED, incomingparticles = [psi], outgoing = [psi], numberofloops = 1, diagrams)

 

`#mfenced(mrow(mo("⁢"),mi("ψ",fontstyle = "normal"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("ψ",fontstyle = "normal"),mo("⁢")),open = "⟨",close = "⟩")` = -%FeynmanIntegral((1/8)*Physics:-FeynmanDiagrams:-Uspinor[psi][i](P__1_)*conjugate(Physics:-FeynmanDiagrams:-Uspinor[psi][l](P__2_))*(-Physics:-g_[alpha, nu]+p__2[nu]*p__2[alpha]/m__A^2)*alpha^2*Physics:-Dgamma[`~alpha`][l, m]*Physics:-Dgamma[`~nu`][n, i]*((P__1[beta]+p__2[beta])*Physics:-Dgamma[`~beta`][m, n]+m__psi*Physics:-KroneckerDelta[m, n])*Dirac(-P__2+P__1)/(Pi^3*(p__2^2-m__A^2+I*Physics:-FeynmanDiagrams:-epsilon)*((P__1+p__2)^2-m__psi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])

(1.18)


In this result we see u[psi] spinor (see ref.[2]), and the propagator of the field A[mu] with a mass m[A]. To indicate that this field is massless use

Setup(massless = A)

`* Partial match of  '`*massless*`' against keyword '`*masslessfields*`' `

 

_______________________________________________________

 

[masslessfields = {A}]

(1.19)

Now the propagator for A[mu] is the one of a massless vector field:

FeynmanDiagrams(L__QED, incoming = [psi], outgoing = [psi], numberofloops = 1)

-%FeynmanIntegral(-(1/8)*Physics:-FeynmanDiagrams:-Uspinor[psi][i](P__1_)*conjugate(Physics:-FeynmanDiagrams:-Uspinor[psi][l](P__2_))*Physics:-g_[alpha, nu]*alpha^2*Physics:-Dgamma[`~alpha`][l, m]*Physics:-Dgamma[`~nu`][n, i]*((P__1[beta]+p__2[beta])*Physics:-Dgamma[`~beta`][m, n]+m__psi*Physics:-KroneckerDelta[m, n])*Dirac(-P__2+P__1)/(Pi^3*(p__2^2+I*Physics:-FeynmanDiagrams:-epsilon)*((P__1+p__2)^2-m__psi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])

(1.20)

The self-energy of the photon:

`#mfenced(mrow(mo("⁢"),mi("A"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("A"),mo("⁢")),open = "⟨",close = "⟩")` = FeynmanDiagrams(L__QED, incomingparticles = [A], outgoing = [A], numberofloops = 1)

`#mfenced(mrow(mo("⁢"),mi("A"),mo("⁢"),mo("|"),mo("⁢"),mi("S"),mo("⁢"),mo("|"),mo("⁢"),mi("A"),mo("⁢")),open = "⟨",close = "⟩")` = -%FeynmanIntegral((1/16)*Physics:-FeynmanDiagrams:-PolarizationVector[A][nu](P__1_)*conjugate(Physics:-FeynmanDiagrams:-PolarizationVector[A][alpha](P__2_))*(m__psi*Physics:-KroneckerDelta[l, n]+p__2[beta]*Physics:-Dgamma[`~beta`][l, n])*alpha^2*Physics:-Dgamma[`~alpha`][n, i]*Physics:-Dgamma[`~nu`][m, l]*((P__1[tau]+p__2[tau])*Physics:-Dgamma[`~tau`][i, m]+m__psi*Physics:-KroneckerDelta[i, m])*Dirac(-P__2+P__1)/(Pi^3*(E__1*E__2)^(1/2)*(p__2^2-m__psi^2+I*Physics:-FeynmanDiagrams:-epsilon)*((P__1+p__2)^2-m__psi^2+I*Physics:-FeynmanDiagrams:-epsilon)), [[p__2]])

(1.21)

where epsilon[A] is the corresponding polarization vector.

When working with non-Abelian gauge fields, the interaction Lagrangian involves derivatives. FeynmanDiagrams  can handle that kind of interaction in momentum representation. Consider for instance a Yang-Mills theory with a massless field B[mu, a] where a is a SU2 index (see eq.(12) of sec. 19.4 of ref.[1]). The interaction Lagrangian can be entered as follows

Setup(su2indices = lowercaselatin_ah, massless = B, op = B)

`* Partial match of  '`*massless*`' against keyword '`*masslessfields*`' `

 

`* Partial match of  '`*op*`' against keyword '`*quantumoperators*`' `

 

_______________________________________________________

 

[masslessfields = {A, B}, quantumoperators = {A, B, phi, psi, psi1}, su2indices = lowercaselatin_ah]

(1.22)

Define(B[mu, a], quiet)

F__B[mu, nu, a] := d_[mu](B[nu, a](X))-d_[nu](B[mu, a](X))

Physics:-d_[mu](B[nu, a](X), [X])-Physics:-d_[nu](B[mu, a](X), [X])

(1.23)

L := (1/2)*g*LeviCivita[a, b, c]*F__B[mu, nu, a]*B[mu, b](X)*B[nu, c](X)+(1/4)*g^2*LeviCivita[a, b, c]*LeviCivita[a, e, f]*B[mu, b](X)*B[nu, c](X)*B[mu, e](X)*B[nu, f](X)

(1/2)*g*Physics:-LeviCivita[a, b, c]*Physics:-`*`(Physics:-d_[mu](B[nu, a](X), [X])-Physics:-d_[nu](B[mu, a](X), [X]), B[`~mu`, b](X), B[`~nu`, c](X))+(1/4)*g^2*Physics:-LeviCivita[a, b, c]*Physics:-LeviCivita[a, e, f]*Physics:-`*`(B[mu, b](X), B[nu, c](X), B[`~mu`, e](X), B[`~nu`, f](X))

(1.24)

The transition probability density at tree-level for a process with two incoming and two outgoing B particles is given by

FeynmanDiagrams(L, incomingparticles = [B, B], outgoingparticles = [B, B], numberofloops = 0, output = probabilitydensity, factor, diagrams)

`* Partial match of  '`*factor*`' against keyword '`*factortreelevel*`' `

(1.25)

 

 

Physics:-FeynmanDiagrams:-ProbabilityDensity(4*Pi^2*%mul(n[i], i = 1 .. 2)*abs(F)^2*Dirac(-P__3[`~sigma`]-P__4[`~sigma`]+P__1[`~sigma`]+P__2[`~sigma`])*%mul(dP_[f]^3, f = 1 .. 2), F = (((1/8)*I)*Physics:-LeviCivita[a1, a3, h]*((-P__1[`~kappa`]-P__2[`~kappa`]-P__4[`~kappa`])*Physics:-g_[`~lambda`, `~tau`]+(P__1[`~lambda`]+P__2[`~lambda`]+P__3[`~lambda`])*Physics:-g_[`~kappa`, `~tau`]-Physics:-g_[`~kappa`, `~lambda`]*(P__3[`~tau`]-P__4[`~tau`]))*Physics:-LeviCivita[a2, d, g]*((P__1[`~beta`]+(1/2)*P__2[`~beta`])*Physics:-g_[`~alpha`, `~sigma`]+(-(1/2)*P__1[`~sigma`]+(1/2)*P__2[`~sigma`])*Physics:-g_[`~alpha`, `~beta`]-(1/2)*Physics:-g_[`~beta`, `~sigma`]*(P__1[`~alpha`]+2*P__2[`~alpha`]))*Physics:-g_[sigma, tau]*Physics:-KroneckerDelta[a2, a3]/((-P__1[chi]-P__2[chi])*(-P__1[`~chi`]-P__2[`~chi`])+I*Physics:-FeynmanDiagrams:-epsilon)-((1/16)*I)*((-P__1[`~beta`]+P__3[`~beta`]-P__4[`~beta`])*Physics:-g_[`~lambda`, `~tau`]+(P__1[`~lambda`]-P__2[`~lambda`]-P__3[`~lambda`])*Physics:-g_[`~beta`, `~tau`]+Physics:-g_[`~beta`, `~lambda`]*(P__2[`~tau`]+P__4[`~tau`]))*Physics:-LeviCivita[a1, a3, g]*((P__1[`~sigma`]+P__3[`~sigma`])*Physics:-g_[`~alpha`, `~kappa`]+(-2*P__1[`~kappa`]+P__3[`~kappa`])*Physics:-g_[`~alpha`, `~sigma`]+Physics:-g_[`~kappa`, `~sigma`]*(P__1[`~alpha`]-2*P__3[`~alpha`]))*Physics:-LeviCivita[a2, d, h]*Physics:-g_[sigma, tau]*Physics:-KroneckerDelta[a2, a3]/((-P__1[chi]+P__3[chi])*(-P__1[`~chi`]+P__3[`~chi`])+I*Physics:-FeynmanDiagrams:-epsilon)-((1/16)*I)*((-P__1[`~beta`]-P__3[`~beta`]+P__4[`~beta`])*Physics:-g_[`~kappa`, `~tau`]+(P__1[`~kappa`]-P__2[`~kappa`]-P__4[`~kappa`])*Physics:-g_[`~beta`, `~tau`]+Physics:-g_[`~beta`, `~kappa`]*(P__2[`~tau`]+P__3[`~tau`]))*Physics:-LeviCivita[a3, g, h]*((P__1[`~sigma`]+P__4[`~sigma`])*Physics:-g_[`~alpha`, `~lambda`]+(P__1[`~alpha`]-2*P__4[`~alpha`])*Physics:-g_[`~lambda`, `~sigma`]-2*Physics:-g_[`~alpha`, `~sigma`]*(P__1[`~lambda`]-(1/2)*P__4[`~lambda`]))*Physics:-LeviCivita[a1, a2, d]*Physics:-g_[sigma, tau]*Physics:-KroneckerDelta[a2, a3]/((-P__1[chi]+P__4[chi])*(-P__1[`~chi`]+P__4[`~chi`])+I*Physics:-FeynmanDiagrams:-epsilon)-((1/16)*I)*(Physics:-KroneckerDelta[g, h]*Physics:-KroneckerDelta[a1, d]*(Physics:-g_[`~alpha`, `~beta`]*Physics:-g_[`~kappa`, `~lambda`]+Physics:-g_[`~alpha`, `~kappa`]*Physics:-g_[`~beta`, `~lambda`]-2*Physics:-g_[`~alpha`, `~lambda`]*Physics:-g_[`~beta`, `~kappa`])+Physics:-KroneckerDelta[d, h]*(Physics:-g_[`~alpha`, `~beta`]*Physics:-g_[`~kappa`, `~lambda`]-2*Physics:-g_[`~alpha`, `~kappa`]*Physics:-g_[`~beta`, `~lambda`]+Physics:-g_[`~alpha`, `~lambda`]*Physics:-g_[`~beta`, `~kappa`])*Physics:-KroneckerDelta[a1, g]-2*(Physics:-g_[`~alpha`, `~beta`]*Physics:-g_[`~kappa`, `~lambda`]-(1/2)*Physics:-g_[`~beta`, `~kappa`]*Physics:-g_[`~alpha`, `~lambda`]-(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-g_[`~beta`, `~lambda`])*Physics:-KroneckerDelta[d, g]*Physics:-KroneckerDelta[a1, h]))*g^2*conjugate(Physics:-FeynmanDiagrams:-PolarizationVector[B][kappa, h](P__3_))*conjugate(Physics:-FeynmanDiagrams:-PolarizationVector[B][lambda, a1](P__4_))*Physics:-FeynmanDiagrams:-PolarizationVector[B][alpha, d](P__1_)*Physics:-FeynmanDiagrams:-PolarizationVector[B][beta, g](P__2_)/(Pi^2*(E__1*E__2*E__3*E__4)^(1/2)))

(1.26)

To simplify the repeated indices, us the option simplifytensorindices. To check the indices entering a result like this one use Check ; there are no free indices, and regarding the repeated indices:

Check(Physics[FeynmanDiagrams]:-ProbabilityDensity(4*Pi^2*%mul(n[i], i = 1 .. 2)*abs(F)^2*Dirac(-P__3[`~sigma`]-P__4[`~sigma`]+P__1[`~sigma`]+P__2[`~sigma`])*%mul(dP_[f]^3, f = 1 .. 2), F = (((1/8)*I)*Physics[LeviCivita][a1, a3, h]*((-P__1[`~kappa`]-P__2[`~kappa`]-P__4[`~kappa`])*Physics[g_][`~lambda`, `~tau`]+(P__1[`~lambda`]+P__2[`~lambda`]+P__3[`~lambda`])*Physics[g_][`~kappa`, `~tau`]-Physics[g_][`~kappa`, `~lambda`]*(P__3[`~tau`]-P__4[`~tau`]))*Physics[LeviCivita][a2, d, g]*((P__1[`~beta`]+(1/2)*P__2[`~beta`])*Physics[g_][`~alpha`, `~sigma`]+(-(1/2)*P__1[`~sigma`]+(1/2)*P__2[`~sigma`])*Physics[g_][`~alpha`, `~beta`]-(1/2)*Physics[g_][`~beta`, `~sigma`]*(P__1[`~alpha`]+2*P__2[`~alpha`]))*Physics[g_][sigma, tau]*Physics[KroneckerDelta][a2, a3]/((-P__1[chi]-P__2[chi])*(-P__1[`~chi`]-P__2[`~chi`])+I*Physics[FeynmanDiagrams]:-epsilon)-((1/16)*I)*((-P__1[`~beta`]+P__3[`~beta`]-P__4[`~beta`])*Physics[g_][`~lambda`, `~tau`]+(P__1[`~lambda`]-P__2[`~lambda`]-P__3[`~lambda`])*Physics[g_][`~beta`, `~tau`]+Physics[g_][`~beta`, `~lambda`]*(P__2[`~tau`]+P__4[`~tau`]))*Physics[LeviCivita][a1, a3, g]*((P__1[`~sigma`]+P__3[`~sigma`])*Physics[g_][`~alpha`, `~kappa`]+(-2*P__1[`~kappa`]+P__3[`~kappa`])*Physics[g_][`~alpha`, `~sigma`]+Physics[g_][`~kappa`, `~sigma`]*(P__1[`~alpha`]-2*P__3[`~alpha`]))*Physics[LeviCivita][a2, d, h]*Physics[g_][sigma, tau]*Physics[KroneckerDelta][a2, a3]/((-P__1[chi]+P__3[chi])*(-P__1[`~chi`]+P__3[`~chi`])+I*Physics[FeynmanDiagrams]:-epsilon)-((1/16)*I)*((-P__1[`~beta`]-P__3[`~beta`]+P__4[`~beta`])*Physics[g_][`~kappa`, `~tau`]+(P__1[`~kappa`]-P__2[`~kappa`]-P__4[`~kappa`])*Physics[g_][`~beta`, `~tau`]+Physics[g_][`~beta`, `~kappa`]*(P__2[`~tau`]+P__3[`~tau`]))*Physics[LeviCivita][a3, g, h]*((P__1[`~sigma`]+P__4[`~sigma`])*Physics[g_][`~alpha`, `~lambda`]+(P__1[`~alpha`]-2*P__4[`~alpha`])*Physics[g_][`~lambda`, `~sigma`]-2*Physics[g_][`~alpha`, `~sigma`]*(P__1[`~lambda`]-(1/2)*P__4[`~lambda`]))*Physics[LeviCivita][a1, a2, d]*Physics[g_][sigma, tau]*Physics[KroneckerDelta][a2, a3]/((-P__1[chi]+P__4[chi])*(-P__1[`~chi`]+P__4[`~chi`])+I*Physics[FeynmanDiagrams]:-epsilon)-((1/16)*I)*(Physics[KroneckerDelta][g, h]*Physics[KroneckerDelta][a1, d]*(Physics[g_][`~alpha`, `~beta`]*Physics[g_][`~kappa`, `~lambda`]+Physics[g_][`~alpha`, `~kappa`]*Physics[g_][`~beta`, `~lambda`]-2*Physics[g_][`~alpha`, `~lambda`]*Physics[g_][`~beta`, `~kappa`])+Physics[KroneckerDelta][d, h]*(Physics[g_][`~alpha`, `~beta`]*Physics[g_][`~kappa`, `~lambda`]-2*Physics[g_][`~alpha`, `~kappa`]*Physics[g_][`~beta`, `~lambda`]+Physics[g_][`~alpha`, `~lambda`]*Physics[g_][`~beta`, `~kappa`])*Physics[KroneckerDelta][a1, g]-2*(Physics[g_][`~alpha`, `~beta`]*Physics[g_][`~kappa`, `~lambda`]-(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[g_][`~beta`, `~kappa`]-(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[g_][`~beta`, `~lambda`])*Physics[KroneckerDelta][d, g]*Physics[KroneckerDelta][a1, h]))*g^2*conjugate(Physics[FeynmanDiagrams]:-PolarizationVector[B][kappa, h](P__3_))*conjugate(Physics[FeynmanDiagrams]:-PolarizationVector[B][lambda, a1](P__4_))*Physics[FeynmanDiagrams]:-PolarizationVector[B][alpha, d](P__1_)*Physics[FeynmanDiagrams]:-PolarizationVector[B][beta, g](P__2_)/(Pi^2*(E__1*E__2*E__3*E__4)^(1/2))), all)

`The repeated indices per term are: `[{`...`}, {`...`}, `...`]*`, the free indices are: `*{`...`}

 

[{a1, a2, a3, alpha, beta, chi, d, g, h, kappa, lambda, sigma, tau}], {}

(1.27)


This process can be computed with 1 or more loops, in which case the number of terms increases significantly. As another interesting non-Abelian model, consider the interaction Lagrangian of the electro-weak part of the Standard Model

Coordinates(clear, Z)

`Unaliasing `*{Z}*` previously defined as a system of spacetime coordinates`

(1.28)

Setup(quantumoperators = {W, Z})

[quantumoperators = {A, B, W, Z, phi, psi, psi1}]

(1.29)

Define(W[mu], Z[mu])

`Defined objects with tensor properties`

 

{A[mu], B[mu, a], Physics:-Dgamma[mu], P__1[mu], P__2[mu], P__3[alpha], P__4[alpha], Physics:-Psigma[mu], W[mu], Z[mu], Physics:-d_[mu], Physics:-g_[mu, nu], p__1[mu], p__2[mu], p__3[mu], p__4[mu], p__5[mu], psi[j], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X), Physics:-SpaceTimeVector[mu](Y)}

(1.30)

CompactDisplay((W, Z)(X))

` W`(X)*`will now be displayed as`*W

 

` Z`(X)*`will now be displayed as`*Z

(1.31)

F__W[mu, nu] := d_[mu](W[nu](X))-d_[nu](W[mu](X))

Physics:-d_[mu](W[nu](X), [X])-Physics:-d_[nu](W[mu](X), [X])

(1.32)

F__Z[mu, nu] := d_[mu](Z[nu](X))-d_[nu](Z[mu](X))

Physics:-d_[mu](Z[nu](X), [X])-Physics:-d_[nu](Z[mu](X), [X])

(1.33)

L__WZ := I*g*cos(`θ__w`)*((Dagger(F__W[mu, nu])*W[mu](X)-Dagger(W[mu](X))*F__W[mu, nu])*Z[nu](X)+W[nu](X)*Dagger(W[mu](X))*F__Z[mu, nu])

I*g*cos(theta__w)*(Physics:-`*`(Physics:-`*`(Physics:-d_[mu](Physics:-Dagger(W[nu](X)), [X])-Physics:-d_[nu](Physics:-Dagger(W[mu](X)), [X]), W[`~mu`](X))-Physics:-`*`(Physics:-Dagger(W[mu](X)), Physics:-d_[`~mu`](W[nu](X), [X])-Physics:-d_[nu](W[`~mu`](X), [X])), Z[`~nu`](X))+Physics:-`*`(W[nu](X), Physics:-Dagger(W[mu](X)), Physics:-d_[`~mu`](Z[`~nu`](X), [X])-Physics:-d_[`~nu`](Z[`~mu`](X), [X])))

(1.34)

This interaction Lagrangian contains six different terms. The S-matrix element for the tree-level process with two incoming and two outgoing W particles is shown in the help page for FeynmanDiagrams .

NULL

References

 

[1] Bogoliubov, N.N., and Shirkov, D.V. Quantum Fields. Benjamin Cummings, 1982.

[2] Weinberg, S., The Quantum Theory Of Fields. Cambridge University Press, 2005.

 

FeynmanDiagrams_and_the_Scattering_Matrix.PDF

FeynmanDiagrams_and_the_Scattering_Matrix.mw

FeynmanDiagrams_-_help_page.mw


Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Application of MapleSim in Science and Engineering: a simulationbased approach

In this research work I show the methods of embedded components together with modeling and simulation carried out with Maple and MapleSim for the main areas of science and engineering (mathematics, physics, civil, mechanical etc); These two latest scientific softwares belonging to the company Maplesoft. Designed to be generated and used by teachers of education, as well as by university teachers and engineers; the results are highly optimal since the times saved in calculations are invested in analyzes and interpretations; among other benefits; in this way we can use our applications in the cloud since web technology supports Maple code with procedural and component syntax.

FAST_UNT_2020.pdf

kinematics_curvilinear_updated_2020.mw

Lenin AC

Ambassador of Maple

 

 The Joint Mathematics Meetings are taking place next week (January 1518) in Denver, CO. This meeting is a must-attend for anyone interested in learning about innovative mathematical research, advancing mathematical achievement, providing the communication and tools to progress in the field, encouraging mathematical research, and connecting with the mathematical community.

Maplesoft will at booth #1100  in the networking area (located just outside the exhibit hall doors). Stop by our booth or the networking area to chat with me and other members of the Maplesoft team, pick up some free Maplesoft swag or win some prizes. We’ve got some good ones!

There are also several interesting Maple-related talks and events happening this week. 

Attend our Workshop - Maple: Math Software for Teaching, Learning and Research

Thursday January 16th, 2020

Centennial Ballroom AHYATT Denver Colorado

Catered Reception: 6:00PM6:30PM
Training Workshop: 6:30PM8:00PM

Are you new to the Maple world and interested in finding out what Maple can do for you? Are you an old hand at Maple but curious about the many new features we’ve added in the past few years? Come join us for an interactive workshop that will guide you through Maple’s capabilities, with an emphasis on our latest additions.

The topics we’ll be covering include:

  • Our natural math notation for input and output
  • Tools for creating interactive documents that incorporate math, text and graphics
  • An overview of our vast library containing packages for advanced mathematics research scientific and engineering applications
  • A brief look at Maple’s powerful programming language|
  • Online and mobile tools that augment the Maple experience

Register herewww.com/ 

We are also 3 show floor talks, at the end of Aisle 600 inside the exhibits:

The Maple Companion App

 January 15

3:00 pm -3:55 pm

Using Maple to Enhance Teaching and Learning

 January 16

11:00 am-11:55 am

The Maple Companion App

January 17

11:00 am- 11:55 am

 

If you are attending the Joint Math Meetings and plan on presenting anything on Maple, please let me know and I'll add it to our list!


See you there!

Charlotte 

Here is two solutions with Maple of the problem A2 of  Putnam Mathematical Competition 2019 . The first solution is entirely based on the use of the  geometry  package; the second solution does not use this package. Since the triangle is defined up to similarity, without loss of generality, we can set its vertices  A(0,0) , B(1,0) , C(x0,y0)  and then calculate the parameters  x0, y0  using the conditions of the problem. 


 

The problem

A2: In the triangle ∆ABC, let G be the centroid, and let I be the center of the
inscribed circle. Let α and β be the angles at the vertices A and B, respectively.
Suppose that the segment IG is parallel to AB and that  β = 2*arctan(1/3).  Find α.
 

# Solution 1 with the geometry package
restart;

# Calculation

with(geometry):
local I:
point(A,0,0): point(B,1,0): point(C,x0,y0):
assume(y0>0,-y0*(-1+x0-((1-x0)^2+y0^2)^(1/2))+y0*((x0^2+y0^2)^(1/2)+x0) <> 0):
triangle(t,[A,B,C]):
incircle(ic,t, 'centername'=I):
Cn:=coordinates(I):
centroid(G,t):
CG:=coordinates(G):
a:=-expand(tan(2*arctan(1/3))):
solve({Cn[2]=CG[2],y0/(x0-1)=a}, explicit);
point(C,eval([x0,y0],%)):
answer=FindAngle(line(AB,[A,B]),line(AC,[A,C]));

# Visualization (G is the point of medians intersection)

triangle(t,[A,B,C]):
incircle(ic,t, 'centername'=I):
centroid(G,t):
segment(s,[I,G]):
median(mB,B,t): median(mC,C,t):
draw([A(symbol=solidcircle,color=black),B(symbol=solidcircle,color=black),C(symbol=solidcircle,color=black),I(symbol=solidcircle,color=green),G(symbol=solidcircle,color=blue),t(color=black),s(color=red,thickness=2),ic(color=green),mB(color=blue,thickness=0),mC(color=blue,thickness=0)], axes=none, size=[800,500], printtext=true,font=[times,20]);

I

 

Warning, The imaginary unit, I, has been renamed _I

 

Warning, solve may be ignoring assumptions on the input variables.

 

{x0 = 0, y0 = 3/4}

 

answer = (1/2)*Pi

 

 


# Solution 2 by a direct calculation

# Calculation

restart;
local I;
sinB:=y0/sqrt(x0^2+y0^2):
cosB:=x0/sqrt(x0^2+y0^2):
Sol1:=eval([x,y],solve({y=-(x-1)/3,y=(sinB/(1+cosB))*x}, {x,y})):
tanB:=expand(tan(2*arctan(1/3))):
Sol2:=solve({y0/3=Sol1[2],y0=-tanB*(x0-1)},explicit);
A:=[0,0]: B:=[1,0]: C:=eval([x0,y0],Sol2[2]):
AB:=<(B-A)[]>: AC:=<(C-A)[]>:
answer=arccos(AB.AC/sqrt(AB.AB)/sqrt(AC.AC));

# Visualization

with(plottools): with(plots):
ABC:=curve([A,B,C,A]):
I:=simplify(eval(Sol1,Sol2[2]));
c:=circle(I,eval(Sol1[2],Sol2[2]),color=green):
G:=(A+B+C)/~3;
IG:=line(I,G,color=red,thickness=2):
P:=pointplot([A,B,C,I,G], color=[black$3,green,blue], symbol=solidcircle):
T:=textplot([[A[],"A"],[B[],"B"],[C[],"C"],[I[],"I"],[G[],"G"]], font=[times,20], align=[left,below]):
M:=plot([[(C+t*~((A+B)/2-C))[],t=0..1],[(B+t*~((A+C)/2-B))[],t=0..1]], color=blue, thickness=0):
display(ABC,c,IG,P,T,M, scaling=constrained, axes=none,size=[800,500]);

I

 

Warning, The imaginary unit, I, has been renamed _I

 

{x0 = 1, y0 = 0}, {x0 = 0, y0 = 3/4}

 

answer = (1/2)*Pi

 

[1/4, 1/4]

 

[1/3, 1/4]

 

 

 


 

Download Putnam.mw

I am very pleased to announce that we have released a new version of the free Maple Companion app. For those you may have missed it, the first release of this app gave you a way to take a picture of math using your phone’s camera and upload it into Maple. Instructors have told me they’ve found this very useful in their classes, as they no longer have to deal with transcription errors as students enter problems into Maple.

So that’s good. But version 2 is a lot better. The Maple Companion now solves math problems directly on your phone. It can handle problems from algebra, precalculus, calculus, linear algebra, differential equations, and more. No need to upload to Maple – students can solve the problem by hand, and then use the app to check their answer, try new operations on the same expression, and even create plots. And if they want to do even more, they can still upload the expression into Maple for more advanced operations and explorations.

There’s also a built-in math editor, so you can enter problems without the camera, too. And if you use the camera, and it misinterprets part of your expression, you can fix it using the editor instead of having to retake the picture.  Good as the math recognition is, even in the face of some pretty poor handwriting, the ability to tweak the results has proven to be extremely useful.

There’s lots more we’d like to do with the Maple Companion app over time, and we’d like hear your thoughts, as well. How else can it help students learn?  How else can it act as a complement to Maple? Let us know!

Visit Maple Companion to learn more, find links to the app stores so you can download the app, and access the feedback form. And if you already have version 1, you can get the new release simply by updating the app on your phone.

 

In order to estimate parameters of permanent magnet synchronous motor (PMSM) on-line and real-time, an adaptive on-line identification method for motor parameters is proposed. Resistance, inductance and PM flux of PMSM are achieved at the same time in the presented model. By means of Popov’s hyper-stability theory, the model of parameter identification is built in the rotor reference frame. And, PMSM d, q-axis voltage, current and their errors are used to obtain the adaptive laws of parameters. Popov’s hyper-stability theory guarantees stability of the system and convergence of the estimated parameters under certain conditions. The simulation and experimental results illustrate the validity and efficiency of the proposed method.


 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mw
 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mw

 

Splitting PDE parameterized symmetries

and Parameter-continuous symmetry transformations

The determination of symmetries for partial differential equation systems (PDE) is relevant in several contexts, the most obvious of which is of course the determination of the PDE solutions. For instance, generally speaking, the knowledge of a N-dimensional Lie symmetry group can be used to reduce the number of independent variables of PDE by N. So if PDE depends only on N independent variables, that amounts to completely solving it. If only N-1 symmetries are known or can be successfully used then PDE becomes and ODE; etc., all advantageous situations. In Maple, a complete set of symmetry commands, to perform each step of the symmetry approach or several of them in one go, is part of the PDEtools  package.

 

Besides the dependent and independent variables, PDE frequently depends on some constant parameters, and besides the PDE symmetries for arbitrary values of those parameters, for some particular values of them, PDE transforms into a completely different problem, admitting different symmetries. The question then is: how can you determine those particular values of the parameters and the corresponding different symmetries? That was the underlying subject of a recent question in Mapleprimes. The answer to those questions is relatively simple and yet not entirely obvious for most of us, motivating this post, organized briefly around one example.

 

To reproduce the input/output below you need Maple 2019 and to have installed the Physics Updates v.449 or higher.

 

Consider the family of Korteweg-de Vries equation for u(x, t)involving three constant parameters a, b, q. For convenience (simpler input and more readable output) use the diff_table  and declare  commands

with(PDEtools)

U := diff_table(u(x, t))

pde := b*U[]*U[x]+a*U[x]+q*U[x, x, x]+U[t] = 0

b*u(x, t)*(diff(u(x, t), x))+a*(diff(u(x, t), x))+q*(diff(diff(diff(u(x, t), x), x), x))+diff(u(x, t), t) = 0

(1)

declare(U[])

` u`(x, t)*`will now be displayed as`*u

(2)

This pde admits a 4-dimensional symmetry group, whose infinitesimals - for arbitrary values of the parameters a, b, q- are given by

I__1 := Infinitesimals(pde, [u], specialize_Cn = false)

[_xi[x](x, t, u) = (1/3)*_C1*x+_C3*t+_C4, _xi[t](x, t, u) = _C1*t+_C2, _eta[u](x, t, u) = (1/3)*((-2*b*u-2*a)*_C1+3*_C3)/b]

(3)

Looking at pde (1) as a nonlinear problem in u, a, b and q, it splits into four cases for some particular values of the parameter:

pde__cases := casesplit(b*u(x, t)*(diff(u(x, t), x))+a*(diff(u(x, t), x))+q*(diff(diff(diff(u(x, t), x), x), x))+diff(u(x, t), t) = 0, parameters = {a, b, q}, caseplot)

`========= Pivots Legend =========`

 

p1 = q

 

p2 = b*u(x, t)+a

 

p3 = b

 

 

`casesplit/ans`([diff(diff(diff(u(x, t), x), x), x) = -(b*u(x, t)*(diff(u(x, t), x))+a*(diff(u(x, t), x))+diff(u(x, t), t))/q], [q <> 0]), `casesplit/ans`([diff(u(x, t), x) = -(diff(u(x, t), t))/(b*u(x, t)+a), q = 0], [b*u(x, t)+a <> 0]), `casesplit/ans`([u(x, t) = -a/b, q = 0], [b <> 0]), `casesplit/ans`([diff(u(x, t), t) = 0, a = 0, b = 0, q = 0], [])

(4)

The legend above indicates the pivots and the tree of cases, depending on whether each pivot is equal or different from 0. At the end there is the algebraic sequence of cases. The first case is the general case, for which the symmetry infinitesimals were computed as I__1 above, but clearly the other three cases admit more general symmetries. Consider for instance the second case, pass the ignoreparameterizingequations to ignore the parameterizing equation q = 0, and you get

I__2 := Infinitesimals(pde__cases[2], ignore)

`* Partial match of  'ignore' against keyword 'ignoreparameterizingequations'`

 

[_xi[x](x, t, u) = _F3(x, t, u), _xi[t](x, t, u) = Intat(((b*u+a)*(D[1](_F3))(_a, ((b*u+a)*t-x+_a)/(b*u+a), u)-_F1(u, ((b*u+a)*t-x)/(b*u+a))*b+(D[2](_F3))(_a, ((b*u+a)*t-x+_a)/(b*u+a), u))/(b*u+a)^2, _a = x)+_F2(u, ((b*u+a)*t-x)/(b*u+a)), _eta[u](x, t, u) = _F1(u, ((b*u+a)*t-x)/(b*u+a))]

(5)

These infinitesimals are indeed much more general than I__1, in fact so general that (5) is almost unreadable ... Specialize the three arbitrary functions into something "easy" just to be able follow - e.g. take _F1 to be just the + operator, _F2 the * operator and _F3 = 1

eval(I__2, [_F1 = `+`, _F2 = `*`, _F3 = 1])

[_xi[x](x, t, u) = 1, _xi[t](x, t, u) = Intat(-(u+((b*u+a)*t-x)/(b*u+a))*b/(b*u+a)^2, _a = x)+u*((b*u+a)*t-x)/(b*u+a), _eta[u](x, t, u) = u+((b*u+a)*t-x)/(b*u+a)]

(6)

simplify(value([_xi[x](x, t, u) = 1, _xi[t](x, t, u) = Intat(-(u+((b*u+a)*t-x)/(b*u+a))*b/(b*u+a)^2, _a = x)+u*((b*u+a)*t-x)/(b*u+a), _eta[u](x, t, u) = u+((b*u+a)*t-x)/(b*u+a)]))

[_xi[x](x, t, u) = 1, _xi[t](x, t, u) = (b^3*t*u^4+((3*a*t-x)*u^3-u^2*x-t*x*u)*b^2+((3*a^2*t-2*a*x)*u^2-a*u*x-a*t*x+x^2)*b+a^2*u*(a*t-x))/(b*u+a)^3, _eta[u](x, t, u) = (b*u^2+(b*t+a)*u+a*t-x)/(b*u+a)]

(7)

This symmetry is of course completely different than [_xi[x](x, t, u) = (1/3)*_C1*x+_C3*t+_C4, _xi[t](x, t, u) = _C1*t+_C2, _eta[u](x, t, u) = ((-2*b*u-2*a)*_C1+3*_C3)/(3*b)]computed for the general case.

 

The symmetry (7) can be verified against pde__cases[2] or directly against pde after substituting q = 0.

[_xi[x](x, t, u) = (1/3)*_C1*x+_C3*t+_C4, _xi[t](x, t, u) = _C1*t+_C2, _eta[u](x, t, u) = (1/3)*((-2*b*u-2*a)*_C1+3*_C3)/b]

(8)

SymmetryTest([_xi[x](x, t, u) = 1, _xi[t](x, t, u) = (b^3*t*u^4+((3*a*t-x)*u^3-u^2*x-t*x*u)*b^2+((3*a^2*t-2*a*x)*u^2-a*u*x-a*t*x+x^2)*b+a^2*u*(a*t-x))/(b*u+a)^3, _eta[u](x, t, u) = (b*u^2+(b*t+a)*u+a*t-x)/(b*u+a)], pde__cases[2], ignore)

`* Partial match of  'ignore' against keyword 'ignoreparameterizingequations'`

 

{0}

(9)

SymmetryTest([_xi[x](x, t, u) = 1, _xi[t](x, t, u) = (b^3*t*u^4+((3*a*t-x)*u^3-u^2*x-t*x*u)*b^2+((3*a^2*t-2*a*x)*u^2-a*u*x-a*t*x+x^2)*b+a^2*u*(a*t-x))/(b*u+a)^3, _eta[u](x, t, u) = (b*u^2+(b*t+a)*u+a*t-x)/(b*u+a)], subs(q = 0, pde))

{0}

(10)

Summarizing: "to split PDE symmetries into cases according to the values of the PDE parameters, split the PDE into cases with respect to these parameters (command PDEtools:-casesplit ) then compute the symmetries for each case"

 

Parameter continuous symmetry transformations

 

A different, however closely related question, is whether pde admits "symmetries with respect to the parameters a, b and q", so whether exists continuous transformations of the parameters a, b and q that leave pde invariant in form.

 

Beforehand, note that since the parameters are constants with regards to the dependent and independent variables (here u(x, t)), such continuous symmetry transformations cannot be used directly to compute a solution for pde. They can, however, be used to reduce the number of parameters. And in some contexts, that is exactly what we need, for example to entirely remove the splitting into cases due to their presence, or to proceed applying a solving method that is valid only when there are no parameters (frequently the case when computing exact solutions to "PDE & Boundary Conditions").

 

To compute such "continuous symmetry transformations of the parameters" that leave pde invariant one can always think of these parameters as "additional independent variables of pde". In terms of formulation, that amounts to replacing the dependency in the dependent variable, i.e. replace u(x, t) by u(x, t, a, b, q)

 

pde__xtabq := subs((x, t) = (x, t, a, b, q), pde)

b*u(x, t, a, b, q)*(diff(u(x, t, a, b, q), x))+a*(diff(u(x, t, a, b, q), x))+q*(diff(diff(diff(u(x, t, a, b, q), x), x), x))+diff(u(x, t, a, b, q), t) = 0

(11)

Compute now the infinitesimals: note there are now three additional ones, related to continuous transformations of "a,b,"and q - for readability, avoid displaying the redundant functionality x, t, a, b, q, u on the left-hand sides of these infinitesimals

Infinitesimals(pde__xtabq, displayfunctionality = false)

[_xi[x] = (1/3)*(_F4(a, b, q)*q+_F3(a, b, q))*x/q+_F6(a, b, q)*t+_F7(a, b, q), _xi[t] = _F4(a, b, q)*t+_F5(a, b, q), _xi[a] = _F1(a, b, q), _xi[b] = _F2(a, b, q), _xi[q] = _F3(a, b, q), _eta[u] = (1/3)*((b*u+a)*_F3(a, b, q)-2*((b*u+a)*_F4(a, b, q)+(3/2)*u*_F2(a, b, q)+(3/2)*_F1(a, b, q)-(3/2)*_F6(a, b, q))*q)/(b*q)]

(12)

This result is more general than what is convenient for algebraic manipulations, so specialize the seven arbitrary functions of a, b, q and keep only the first symmetry that result from this specialization: that suffices to illustrate the removal of any of the three parameters a, b, or q

S := Library:-Specialize_Fn([_xi[x] = (1/3)*(_F4(a, b, q)*q+_F3(a, b, q))*x/q+_F6(a, b, q)*t+_F7(a, b, q), _xi[t] = _F4(a, b, q)*t+_F5(a, b, q), _xi[a] = _F1(a, b, q), _xi[b] = _F2(a, b, q), _xi[q] = _F3(a, b, q), _eta[u] = (1/3)*((b*u+a)*_F3(a, b, q)-2*((b*u+a)*_F4(a, b, q)+(3/2)*u*_F2(a, b, q)+(3/2)*_F1(a, b, q)-(3/2)*_F6(a, b, q))*q)/(b*q)])[1 .. 1]

[_xi[x] = 0, _xi[t] = 0, _xi[a] = 1, _xi[b] = 0, _xi[q] = 0, _eta[u] = -1/b]

(13)

To remove the parameters, as it is standard in the symmetry approach, compute a transformation to canonical coordinates, with respect to the parameter a. That means a transformation that changes the list of infinitesimals, or likewise its infinitesimal generator representation,

InfinitesimalGenerator(S, [u(x, t, a, b, q)])

proc (f) options operator, arrow; diff(f, a)-(diff(f, u))/b end proc

(14)

into [_xi[x] = 0, _xi[t] = 0, _xi[a] = 1, _xi[b] = 0, _xi[q] = 0, _eta[u] = 0] or its equivalent generator representation  proc (f) options operator, arrow; diff(f, a) end proc

That same transformation, when applied to pde__xtabq, entirely removes the parameter a.

The transformation is computed using CanonicalCoordinates and the last argument indicates the "independent variable" (in our case a parameter) that the transformation should remove. We choose to remove a

CanonicalCoordinates(S, [u(x, t, a, b, q)], [upsilon(xi, tau, alpha, beta, chi)], a)

{alpha = a, beta = b, chi = q, tau = t, xi = x, upsilon(xi, tau, alpha, beta, chi) = (b*u(x, t, a, b, q)+a)/b}

(15)

declare({alpha = a, beta = b, chi = q, tau = t, xi = x, upsilon(xi, tau, alpha, beta, chi) = (b*u(x, t, a, b, q)+a)/b})

` u`(x, t, a, b, q)*`will now be displayed as`*u

 

` upsilon`(xi, tau, alpha, beta, chi)*`will now be displayed as`*upsilon

(16)

Invert this transformation in order to apply it

solve({alpha = a, beta = b, chi = q, tau = t, xi = x, upsilon(xi, tau, alpha, beta, chi) = (b*u(x, t, a, b, q)+a)/b}, {a, b, q, t, x, u(x, t, a, b, q)})

{a = alpha, b = beta, q = chi, t = tau, x = xi, u(x, t, a, b, q) = (upsilon(xi, tau, alpha, beta, chi)*beta-alpha)/beta}

(17)

The next step is not necessary, but just to understand how all this works, verify its action over the infinitesimal generator proc (f) options operator, arrow; diff(f, a)-(diff(f, u))/b end proc

ChangeSymmetry({a = alpha, b = beta, q = chi, t = tau, x = xi, u(x, t, a, b, q) = (upsilon(xi, tau, alpha, beta, chi)*beta-alpha)/beta}, proc (f) options operator, arrow; diff(f, a)-(diff(f, u))/b end proc, [upsilon(xi, tau, alpha, beta, chi), xi, tau, alpha, beta, chi])

proc (f) options operator, arrow; diff(f, alpha) end proc

(18)

Now that we see the transformation (17) is the one we want, just use it to change variables in pde__xtabq

PDEtools:-dchange({a = alpha, b = beta, q = chi, t = tau, x = xi, u(x, t, a, b, q) = (upsilon(xi, tau, alpha, beta, chi)*beta-alpha)/beta}, pde__xtabq, [upsilon(xi, tau, alpha, beta, chi), xi, tau, alpha, beta, chi], simplify)

upsilon(xi, tau, alpha, beta, chi)*(diff(upsilon(xi, tau, alpha, beta, chi), xi))*beta+chi*(diff(diff(diff(upsilon(xi, tau, alpha, beta, chi), xi), xi), xi))+diff(upsilon(xi, tau, alpha, beta, chi), tau) = 0

(19)

As expected, this result depends only on two parameters, beta, and chi, and the one equivalent to a (that is alpha, see the transformation used (17)), is not present anymore.

To remove b or q we use the same steps, (15), (17) and (19), just changing the parameter to be removed, indicated as the last argument  in the call to CanonicalCoordinates . For example, to eliminate b (represented in the new variables by beta), input

CanonicalCoordinates(S, [u(x, t, a, b, q)], [upsilon(xi, tau, alpha, beta, chi)], b)

{alpha = b, beta = a, chi = q, tau = t, xi = x, upsilon(xi, tau, alpha, beta, chi) = (b*u(x, t, a, b, q)+a)/b}

(20)

solve({alpha = b, beta = a, chi = q, tau = t, xi = x, upsilon(xi, tau, alpha, beta, chi) = (b*u(x, t, a, b, q)+a)/b}, {a, b, q, t, x, u(x, t, a, b, q)})

{a = beta, b = alpha, q = chi, t = tau, x = xi, u(x, t, a, b, q) = (upsilon(xi, tau, alpha, beta, chi)*alpha-beta)/alpha}

(21)

PDEtools:-dchange({a = beta, b = alpha, q = chi, t = tau, x = xi, u(x, t, a, b, q) = (upsilon(xi, tau, alpha, beta, chi)*alpha-beta)/alpha}, pde__xtabq, [upsilon(xi, tau, alpha, beta, chi), xi, tau, alpha, beta, chi], simplify)

upsilon(xi, tau, alpha, beta, chi)*(diff(upsilon(xi, tau, alpha, beta, chi), xi))*alpha+chi*(diff(diff(diff(upsilon(xi, tau, alpha, beta, chi), xi), xi), xi))+diff(upsilon(xi, tau, alpha, beta, chi), tau) = 0

(22)

and as expected this result does not contain "beta. "To remove a second parameter, the whole cycle is repeated starting with computing infinitesimals, for instance for (22). Finally, the case of function parameters is treated analogously, by considering the function parameters as additional dependent variables instead of independent ones.

 


 

Download How_to_split_symmetries_into_cases_(II).mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Application developed using Maple and MapleSim. You can observe the vector analysis using Maple and the simulation using MapleSim. Also included a video of the result. It is a simple structure. A pole fastened by two cables and a force applied to the top. The results are to calculate tensions one and two. Consider the mass of each rope. In spanish.

POSTE_PARADO.zip

Lenin Araujo Castillo

Ambassador of Maple

 

I have noticed that there exists a Stack Exchange site for mathematica, and not for maple. My discussions with the part of Stack Exchange that handle the creation of a new Stack Exchange community have said that I must accrue a certain level of interest in the subject in order for it to be approved, and so I thought I would begin here to see if there is suffice level of interest.

This would not diminish the use of the Maple Primes forum, and an additional proposal, in consideration of the years of dedication that have gone into this domain, be to pool the data between the two, make reputation points the same on both, perhaps even user profiles and questions answered already linkable, and all of the questions already addressed here showing up in the search on both domains.

I am proposing this simply because I want to encourage the use of maple, and have noted that Stack Exchange is very popular. 

So I am posting this to get overall feedback from other Maple users, as to what their opinion is regarding this proposal, and advice on whether it should and how it ought to be pursued.

Integral Transforms (revamped) and PDEs

 

Integral transforms, implemented in Maple as the inttrans  package, are special integrals that appear frequently in mathematical-physics and that have remarkable properties. One of the main uses of integral transforms is for the computation of exact solutions to ordinary and partial differential equations with initial/boundary conditions. In Maple, that functionality is implemented in dsolve/inttrans  and in pdsolve/boundary conditions .

 

During the last months, we have been working heavily on several aspects of these integral transform functions and this post is about that. This is work in progress, in collaboration with Katherina von Bulow

 

The integral transforms are represented by the commands of the inttrans  package:

with(inttrans)

[addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable, setup]

(1)

Three of these commands, addtable, savetable, and setup (this one is new, only present after installing the Physics Updates) are "administrative" commands while the others are computational representations for integrals. For example,

FunctionAdvisor(integral_form, fourier)

[fourier(a, b, z) = Int(a/exp(I*b*z), b = -infinity .. infinity), MathematicalFunctions:-`with no restrictions on `(a, b, z)]

(2)

FunctionAdvisor(integral_form, mellin)

[mellin(a, b, z) = Int(a*b^(z-1), b = 0 .. infinity), MathematicalFunctions:-`with no restrictions on `(a, b, z)]

(3)

For all the integral transform commands, the first argument is the integrand, the second one is the dummy integration variable of a definite integral and the third one is the evaluation point. (also called transform variable). The integral representation is also visible using the convert network

laplace(f(t), t, s); % = convert(%, Int)

laplace(f(t), t, s) = Int(f(t)*exp(-s*t), t = 0 .. infinity)

(4)

Having in mind the applications of these integral transforms to compute integrals and exact solutions to PDE with boundary conditions, five different aspects of these transforms received further development:

• 

Compute Derivatives: Yes or No

• 

Numerical Evaluation

• 

Two Hankel Transform Definitions

• 

More integral transform results

• 

Mellin and Hankel transform solutions for Partial Differential Equations with boundary conditions


The project includes having all these tranforms available at user level (not ready), say as FourierTransform for inttrans:-fourier, so that we don't need to input with(inttrans) anymore. Related to these changes we also intend to have Heaviside(0) not return undefined anymore, and return itself instead, unevaluated, so that one can set its value according to the problem/preferred convention (typically 0, 1/2 or 1) and have all the Maple library following that choice.

The material presented in the following sections is reproducible already in Maple 2019 by installing the latest Physics Updates (v.435 or higher),

Compute derivatives: Yes or No.

 

For historical reasons, previous implementations of these integral transform commands did not follow a standard paradigm of computer algebra: "Given a function f(x), the input diff(f(x), x) should return the derivative of f(x)". The implementation instead worked in the opposite direction: if you were to input the result of the derivative, you would receive the derivative representation. For example, to the input laplace(-t*f(t), t, s) you would receive d*laplace(f(t), t, s)/ds. This is particularly useful for the purpose of using integral transforms to solve differential equations but it is counter-intuitive and misleading; Maple knows the differentiation rule of these functions, but that rule was not evident anywhere. It was not clear how to compute the derivative (unless you knew the result in advance).

 

To solve this issue, a new command, setup, has been added to the package, so that you can set "whether or not" to compute derivatives, and the default has been changed to computederivatives = true while the old behavior is obtained only if you input setup(computederivatives = false). For example, after having installed the Physics Updates,

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 435 and is the same as the version installed in this computer, created 2019, October 1, 12:46 hours, found in the directory /Users/ecterrab/maple/toolbox/2019/Physics Updates/lib/`

(1.1)

the current settings can be queried via

setup(computederivatives)

computederivatives = true

(1.2)

and so differentiating returns the derivative computed

(%diff = diff)(laplace(f(t), t, s), s)

%diff(laplace(f(t), t, s), s) = -laplace(f(t)*t, t, s)

(1.3)

while changing this setting to work as in previous releases you have this computation reversed: you input the output (1.3) and you get the corresponding input

setup(computederivatives = false)

computederivatives = false

(1.4)

%diff(laplace(f(t), t, s), s) = -laplace(t*f(t), t, s)

%diff(laplace(f(t), t, s), s) = diff(laplace(f(t), t, s), s)

(1.5)

Reset the value of computederivatives

setup(computederivatives = true)

computederivatives = true

(1.6)

%diff(laplace(f(t), t, s), s) = -laplace(t*f(t), t, s)

%diff(laplace(f(t), t, s), s) = -laplace(f(t)*t, t, s)

(1.7)

In summary: by default, derivatives of integral transforms are now computed; if you need to work with these derivatives as in  previous releases, you can input setup(computederivatives = false). This setting can be changed any time you want within one and the same Maple session, and changing it does not have any impact on the performance of intsolve, dsolve and pdsolve to solve differential equations using integral transforms.

``

Numerical Evaluation

 

In previous releases, integral transforms had no numerical evaluation implemented. This is in the process of changing. So, for example, to numerically evaluate the inverse laplace transform ( invlaplace  command), three different algorithms have been implemented: Gaver-Stehfest, Talbot and Euler, following the presentation by Abate and Whitt, "Unified Framework for Numerically Inverting Laplace Transforms", INFORMS Journal on Computing 18(4), pp. 408–421, 2006.

 

For example, consider the exact solution to this partial differential equation subject to initial and boundary conditions

pde := diff(u(x, t), x) = 4*(diff(u(x, t), t, t))

iv := u(x, 0) = 0, u(0, t) = 1

 

Note that these two conditions are not entirely compatible: the solution returned cannot be valid for x = 0 and t = 0 simultaneously. However, a solution discarding that point does exist and is given by

sol := pdsolve([pde, iv])

u(x, t) = -invlaplace(exp(-(1/2)*s^(1/2)*t)/s, s, x)+1

(2.1)

Verifying the solution, one condition remains to be tested

pdetest(sol, [pde, iv])

[0, 0, -invlaplace(exp(-(1/2)*s^(1/2)*t)/s, s, 0)]

(2.2)

Since we now have numerical evaluation rules, we can test that what looks different from 0 in the above is actually 0.

zero := [0, 0, -invlaplace(exp(-(1/2)*s^(1/2)*t)/s, s, 0)][-1]

-invlaplace(exp(-(1/2)*s^(1/2)*t)/s, s, 0)

(2.3)

Add a small number to the initial value of t to skip the point t = 0

plot(zero, t = 0+10^(-10) .. 1)

 

The default method used is the method of Euler sums and the numerical evaluation is performed as usual using the evalf command. For example, consider

F := sin(sqrt(2*t))

 

The Laplace transform of F is given by

LT := laplace(F, t, s)

(1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2)

(2.4)

and the inverse Laplace transform of LT in inert form is

ILT := %invlaplace(LT, s, t)

%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, t)

(2.5)

At t = 1 we have

eval(ILT, t = 1)

%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1)

(2.6)

evalf(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1))

.9877659460

(2.7)

This result is consistent with the one we get if we first compute the exact form of the inverse Laplace transform at t = 1:

%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1) = value(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1))

%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1) = sin(2^(1/2))

(2.8)

evalf(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1) = sin(2^(1/2)))

.9877659460 = .9877659459

(2.9)

In addition to the standard use of evalf to numerically evaluate inverse Laplace transforms, one can invoke each of the three different methods implemented using the MathematicalFunctions:-Evalf  command

with(MathematicalFunctions, Evalf)

[Evalf]

(2.10)

Evalf(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1), method = Talbot)

.9877659460

(2.11)

MF:-Evalf(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1), method = GaverStehfest)

.9877659460

(2.12)

MF:-Evalf(%invlaplace((1/2)*2^(1/2)*Pi^(1/2)*exp(-(1/2)/s)/s^(3/2), s, 1), method = Euler)

.9877659460

(2.13)

Regarding the method we use by default: from a numerical experiment with varied problems we have concluded that our implementation of the Euler (sums) method is faster and more accurate than the other two.

 

Two Hankel transform definitions

 


In previous Maple releases, the definition of the Hankel transform was given by

hankel(f(t), t, s, nu) = Int(f(t)*sqrt(s*t)*BesselJ(nu, s*t), t = 0 .. infinity)

where BesselJ(nu, s*t) is the BesselJ(nu, s*t) function. This definition, sometimes called alternative definition of the Hankel transform, has the inconvenience of the square root sqrt(s*t) in the integrand, complicating the form of the hankel transform for the Laplacian in cylindrical coordinates. On the other hand, the definition more frequently used in the literature is

 hankel(f(t), t, s, nu) = Int(f(t)*t*BesselJ(nu, s*t), t = 0 .. infinity)

With it, the Hankel transform of diff(u(r, t), r, r)+(diff(u(r, t), r))/r+diff(u(r, t), t, t) is given by the simple ODE form d^2*`&Hopf;`(k, t)/dt^2-k^2*`&Hopf;`(k, t). Not just this transform but several other ones acquire a simpler form with the definition that does not have a square root in the integrand.

So the idea is to align Maple with this simpler definition, while keeping the previous definition as an alternative. Hence, by default, when you load the inttrans package, the new definition in use for the Hankel transform is

hankel(f(t), t, s, nu); % = convert(%, Int)

hankel(f(t), t, s, nu) = Int(f(t)*t*BesselJ(nu, s*t), t = 0 .. infinity)

(3.1)

You can change this default so that Maple works with the alternative definition as in previous releases.  For that purpose, use the new inttrans:-setup command (which you can also use to query about the definition in use at any moment):

setup(alternativehankeldefinition)

alternativehankeldefinition = false

(3.2)

This change in definition is automatically taken into account by other parts of the Maple library using the Hankel transform. For example, the differentiation rule with the new definition is

(%diff = diff)(hankel(f(t), t, z, nu), z)

%diff(hankel(f(t), t, z, nu), z) = -hankel(t*f(t), t, z, nu+1)+nu*hankel(f(t), t, z, nu)/z

(3.3)

This differentiation rule resembles (is connected to) the differentiation rule for BesselJ, and this is another advantage of the new definition.

(%diff = diff)(BesselJ(nu, z), z)

%diff(BesselJ(nu, z), z) = -BesselJ(nu+1, z)+nu*BesselJ(nu, z)/z

(3.4)

Furthermore, several transforms have acquired a simpler form, as for example:

`assuming`([(%hankel = hankel)(exp(I*a*r)/r, r, k, 0)], [a > 0, k < a])

%hankel(exp(I*a*r)/r, r, k, 0) = 1/(-a^2+k^2)^(1/2)

(3.5)

Let's compare: make the definition be as in previous releases.

setup(alternativehankeldefinition = true)

alternativehankeldefinition = true

(3.6)

hankel(f(t), t, s, nu); % = convert(%, Int)

hankel(f(t), t, s, nu) = Int(f(t)*(s*t)^(1/2)*BesselJ(nu, s*t), t = 0 .. infinity)

(3.7)

The differentiation rule with the previous (alternative) definition was not as simple:

(%diff = diff)(hankel(f(t), t, s, nu), s)

%diff(hankel(f(t), t, s, nu), s) = -hankel(t*f(t), t, s, nu+1)+nu*hankel(f(t), t, s, nu)/s+(1/2)*hankel(f(t), t, s, nu)/s

(3.8)

And the transform (3.5) was also not so simple:

`assuming`([(%hankel = hankel)(exp(I*a*r)/r, r, k, 0)], [a > 0, k < a])

%hankel(exp(I*a*r)/r, r, k, 0) = (I*a*hypergeom([3/4, 3/4], [3/2], a^2/k^2)*GAMMA(3/4)^4+Pi^2*k*hypergeom([1/4, 1/4], [1/2], a^2/k^2))/(k*Pi*GAMMA(3/4)^2)

(3.9)

Reset to the new default value of the definition.

setup(alternativehankeldefinition = false)

alternativehankeldefinition = false

(3.10)

hankel(f(t), t, s, nu); % = convert(%, Int)

hankel(f(t), t, s, nu) = Int(f(t)*t*BesselJ(nu, s*t), t = 0 .. infinity)

(3.11)

More integral transform results

 

 

The revision of the integral transforms includes also filling gaps: previous transforms that were not being computed are now computed. Still with the Hankel transform, consider the operators

`D/t` := proc (u) options operator, arrow; (diff(u, t))/t end proc
formula_plus := t^(-nu)*(`D/t`@@m)(t^(m+nu)*u(t))

formula_minus := t^nu*(`D/t`@@m)(t^(m-nu)*u(t))

 

Being able to transform these operators into algebraic expressions or differential equations of lower order is key for solving PDE problems with Boundary Conditions.

 

Consider, for instance, this ODE

setup(computederivatives = false)

computederivatives = false

(4.1)

simplify(eval(formula_minus, [nu = 6, m = 3]))

((diff(diff(diff(u(t), t), t), t))*t^3-12*(diff(diff(u(t), t), t))*t^2+57*(diff(u(t), t))*t-105*u(t))/t^3

(4.2)

Its Hankel transform is a simple algebraic expression

hankel(((diff(diff(diff(u(t), t), t), t))*t^3-12*(diff(diff(u(t), t), t))*t^2+57*(diff(u(t), t))*t-105*u(t))/t^3, t, s, 6)

-s^3*hankel(u(t), t, s, 3)

(4.3)

An example with formula_plus

simplify(eval(formula_plus, [nu = 7, m = 4]))

((diff(diff(diff(diff(u(t), t), t), t), t))*t^4+38*(diff(diff(diff(u(t), t), t), t))*t^3+477*(diff(diff(u(t), t), t))*t^2+2295*(diff(u(t), t))*t+3465*u(t))/t^4

(4.4)

hankel(((diff(diff(diff(diff(u(t), t), t), t), t))*t^4+38*(diff(diff(diff(u(t), t), t), t))*t^3+477*(diff(diff(u(t), t), t))*t^2+2295*(diff(u(t), t))*t+3465*u(t))/t^4, t, s, 7)

s^4*hankel(u(t), t, s, 11)

(4.5)

In the case of hankel , not just differential operators but also several new transforms are now computable

hankel(1, r, k, nu)

piecewise(nu = 0, Dirac(k)/k, nu/k^2)

(4.6)

hankel(r^m, r, k, nu)

piecewise(And(nu = 0, m = 0), Dirac(k)/k, 2^(m+1)*k^(-m-2)*GAMMA(1+(1/2)*m+(1/2)*nu)/GAMMA((1/2)*nu-(1/2)*m))

(4.7)

NULL

Mellin and Hankel transform solutions for Partial Differential Equations with Boundary Conditions

 


In previous Maple releases, the Fourier and Laplace transforms were used to compute exact solutions to PDE problems with boundary conditions. Now, Mellin and Hankel transforms are also used for that same purpose.

 

Example:

pde := x^2*(diff(u(x, y), x, x))+x*(diff(u(x, y), x))+diff(u(x, y), y, y) = 0

iv := u(x, 0) = 0, u(x, 1) = piecewise(0 <= x and x < 1, 1, 1 < x, 0)

sol := pdsolve([pde, iv])

u(x, y) = invmellin(sin(s*y)/(sin(s)*s), s, x)

(5.1)


As usual, you can let pdsolve choose the solving method, or indicate the method yourself:

pde := diff(u(r, t), r, r)+(diff(u(r, t), r))/r+diff(u(r, t), t, t) = -Q__0*q(r)
iv := u(r, 0) = 0

pdsolve([pde, iv])

u(r, t) = Q__0*(-hankel(exp(-s*t)*hankel(q(r), r, s, 0)/s^2, s, r, 0)+hankel(hankel(q(r), r, s, 0)/s^2, s, r, 0))

(5.2)

It is sometimes preferable to see these solutions in terms of more familiar integrals. For that purpose, use

convert(u(r, t) = Q__0*(-hankel(exp(-s*t)*hankel(q(r), r, s, 0)/s^2, s, r, 0)+hankel(hankel(q(r), r, s, 0)/s^2, s, r, 0)), Int, only = hankel)

u(r, t) = Q__0*(-(Int(exp(-s*t)*(Int(q(r)*r*BesselJ(0, r*s), r = 0 .. infinity))*BesselJ(0, r*s)/s, s = 0 .. infinity))+Int((Int(q(r)*r*BesselJ(0, r*s), r = 0 .. infinity))*BesselJ(0, r*s)/s, s = 0 .. infinity))

(5.3)

An example where the hankel transform is computable to the end:

pde := c^2*(diff(u(r, t), r, r)+(diff(u(r, t), r))/r) = diff(u(r, t), t, t)
iv := u(r, 0) = A*a/(a^2+r^2)^(1/2), (D[2](u))(r, 0) = 0
NULL

`assuming`([pdsolve([pde, iv], method = Hankel)], [r > 0, t > 0, a > 0])

u(r, t) = (1/2)*A*a*((-c^2*t^2+(2*I)*a*c*t+a^2+r^2)^(1/2)+(-c^2*t^2-(2*I)*a*c*t+a^2+r^2)^(1/2))/((-c^2*t^2-(2*I)*a*c*t+a^2+r^2)^(1/2)*(-c^2*t^2+(2*I)*a*c*t+a^2+r^2)^(1/2))

(5.4)

``


 

Download Integral_Transforms_(revamped).mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I’m very pleased to announce that we have just released the Maple Companion mobile app for iOS and Android phones. As its name implies, this free app is a complement to Maple. You can use it to take pictures of math you find out in the wild (e.g. in your handwritten notes, on a blackboard, in a textbook), and bring that math into Maple so you can get to work.

The Maple Companion lets you:

  • Avoid the mistakes that can occur when transcribing mathematical expressions into Maple manually
  • Save time when entering multiple equations into Maple, such as when you are checking your homework or pulling information from a reference book
  • Push math you’ll need later into Maple now, even if you don’t have your computer handy

The Maple Companion is an idea we started playing with recently. We believe it has interesting potential as a tool to help students learn math, and we’d really like your feedback to help shape its future direction. This first release is a step towards that goal, so you can try it out and start thinking about what else you would like to see from an app like this. Should it bring in entire documents? Integrate with tutors and Math Apps? Help students figure out where they went wrong when solving a problem? Let us know what you think!

Visit Maple Companion to learn more, link to the app stores so you can download the app, and access the feedback form. And of course, you are also welcome to give us your ideas in the comment section of this post.

Although the graph of a parametrized surface can be viewed and manipulated on the computer screen as a surface in 3D, it is not quite suitable for printing on a 3D printer since such a surface has zero thickness, and thus it does not correspond to physical object.

To produce a 3D printout of a surface, it needs to be endowed with some "thickness".  To do that, we move every point from the surface in the direction of that point's nomral vector by the amount ±T/2, where T is the desired thickness.  The locus of the points thus obtained forms a thin shell of thickness T around the original surface, thus making it into a proper solid. The result then may be saved into a file in the STL format and be sent to a 3D printner for reproduction.

The worksheet attached to this post provides a facility for translating a parametrized surface into an STL file.  It also provides a command for viewing the thickened object on the screen.  The details are documented within that worksheet.

Here are a few samples.  Each sample is shown twice—one as it appears within Maple, and another as viewed by loading the STL file into MeshLab which is a free mesh viewing/manipulation software.

 

Here is the worksheet that produced these:  thicken.mw

 

 

Analysis in Dynamics of Structures with Maplesim for Engineering
Here is the power of Maplesim in modeling and simulation. With Maplesim you can model structures at rest and dynamics. Considering real patterns of our world for better optimization.Project developed for students of Civil Engineering, Architecture, Mechatronics and all those professional careers related to structures.

CIMAC_UNALM_2019.pdf

Lenin Araujo Castillo

Ambassador of Maple

This post is closely related to the previous one  https://www.mapleprimes.com/posts/210930-Numbrix-Puzzle-By-The-Branch-And-Bound-Method  which presents the procedure  NumbrixPuzzle   that allows you to effectively solve these puzzles (the text of this procedure is also available in the worksheet below).  
This post is about generating these puzzles. To do this, we need the procedure  SerpentinePaths  (see below) , which allows us to generate a large number of serpentine paths in a matrix of a specified size, starting with a specified matrix element. Note that for a square matrix of the order  n , the number of such paths starting from [1,1] - position is the sequence  https://oeis.org/search?q=1%2C2%2C8%2C52%2C824&language=english&go=Search .

The required parameter of  SerpentinePaths procedure is the list  S , which defines the dimensions of the matrix. The optional parameter is the list  P  - this is the position of the number 1 (by default P=[1,1] ).
As an example below, we generate 20 puzzles of size 6 by 6. In exactly the same way, we can generate the desired number of puzzles for matrices of other sizes.


 

restart;

SerpentinePaths:=proc(S::list, P::list:=[1,1])
local OneStep, A, m, F, B, T, a;

OneStep:=proc(A::listlist)
local s, L, B, T, k, l;

s:=max[index](A);
L:=[[s[1]-1,s[2]],[s[1]+1,s[2]],[s[1],s[2]-1],[s[1],s[2]+1]];
T:=table(); k:=0;
for l in L do
if l[1]>=1 and l[1]<=S[1] and l[2]>=1 and l[2]<=S[2] and A[op(l)]=0 then k:=k+1; B:=subsop(l=a+1,A);
T[k]:=B fi;
od;
convert(T, list);
end proc;
A:=convert(Matrix(S[], {(P[])=1}), listlist);
m:=S[1]*S[2]-1;
B:=[$ 1..m];
F:=LM->ListTools:-FlattenOnce(map(OneStep, `if`(nops(LM)<=30000,LM,LM[-30000..-1])));
T:=[A];
for a in B do
T:=F(T);
od;
map(convert, T, Matrix);

end proc:
 

NumbrixPuzzle:=proc(A::Matrix)
local A1, L, N, S, MS, OneStepLeft, OneStepRight, F1, F2, m, L1, p, q, a, b, T, k, s1, s, H, n, L2, i, j, i1, j1, R;
uses ListTools;
S:=upperbound(A); N:=nops(op(A)[3]); MS:=`*`(S);
A1:=convert(A, listlist);
for i from 1 to S[1] do
for j from 1 to S[2] do
for i1 from i to S[1] do
for j1 from 1 to S[2] do
if A1[i,j]<>0 and A1[i1,j1]<>0 and abs(A1[i,j]-A1[i1,j1])<abs(i-i1)+abs(j-j1) then return `no solutions` fi;
od; od; od; od;
L:=sort(select(e->e<>0, Flatten(A1)));
L1:=[`if`(L[1]>1,seq(L[1]-k, k=0..L[1]-2),NULL)];
L2:=[seq(seq(`if`(L[i+1]-L[i]>1,L[i]+k,NULL),k=0..L[i+1]-L[i]-2), i=1..nops(L)-1), `if`(L[-1]<MS,seq(L[-1]+k,k=0..MS-L[-1]-1),NULL)];
OneStepLeft:=proc(A1::listlist)
local s, M, m, k, T;
uses ListTools;
s:=Search(a, Matrix(A1));   
M:=[[s[1]-1,s[2]],[s[1]+1,s[2]],[s[1],s[2]-1],[s[1],s[2]+1]];
T:=table(); k:=0;
for m in M do
if m[1]>=1 and m[1]<=S[1] and m[2]>=1 and m[2]<=S[2] and A1[op(m)]=0 then k:=k+1; T[k]:=subsop(m=a-1,A1);
fi;
od;
convert(T, list);
end proc;
OneStepRight:=proc(A1::listlist)
local s, M, m, k, T, s1;
uses ListTools;
s:=Search(a, Matrix(A1));  s1:=Search(a+2, Matrix(A1));  
M:=[[s[1]-1,s[2]],[s[1]+1,s[2]],[s[1],s[2]-1],[s[1],s[2]+1]];
T:=table(); k:=0;
for m in M do
if m[1]>=1 and m[1]<=S[1] and m[2]>=1 and m[2]<=S[2] and A1[op(m)]=0 and `if`(a+2 in L, `if`(is(abs(s1[1]-m[1])+abs(s1[2]-m[2])>1),false,true),true) then k:=k+1; T[k]:=subsop(m=a+1,A1);
fi;
od;
convert(T, list);   
end proc;
F1:=LM->ListTools:-FlattenOnce(map(OneStepLeft, LM));
F2:=LM->ListTools:-FlattenOnce(map(OneStepRight, LM));
T:=[A1];
for a in L1 do
T:=F1(T);
od;
for a in L2 do
T:=F2(T);
od;
R:=map(t->convert(t,Matrix), T);
if nops(R)=0 then return `no solutions` else R fi;
end proc:


Simple examples

SerpentinePaths([3,3]);  # All the serpentine paths for the matrix  3x3, starting with [1,1]-position
SerpentinePaths([3,3],[1,2]);  # No solutions if the start with [1,2]-position
SerpentinePaths([4,4]):  # All the serpentine paths for the matrix  4x4, starting with [1,1]-position
nops(%);
nops(SerpentinePaths([4,4],[1,2]));  # The number of all the serpentine paths for the matrix  4x4, starting with [1,2]-position
nops(SerpentinePaths([4,4],[2,2]));  # The number of all the serpentine paths for the matrix  4x4, starting with [2,2]-position

[Matrix(3, 3, {(1, 1) = 1, (1, 2) = 6, (1, 3) = 7, (2, 1) = 2, (2, 2) = 5, (2, 3) = 8, (3, 1) = 3, (3, 2) = 4, (3, 3) = 9}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 8, (1, 3) = 7, (2, 1) = 2, (2, 2) = 9, (2, 3) = 6, (3, 1) = 3, (3, 2) = 4, (3, 3) = 5}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 8, (1, 3) = 9, (2, 1) = 2, (2, 2) = 7, (2, 3) = 6, (3, 1) = 3, (3, 2) = 4, (3, 3) = 5}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 4, (1, 3) = 5, (2, 1) = 2, (2, 2) = 3, (2, 3) = 6, (3, 1) = 9, (3, 2) = 8, (3, 3) = 7}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 9, (2, 1) = 4, (2, 2) = 3, (2, 3) = 8, (3, 1) = 5, (3, 2) = 6, (3, 3) = 7}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 8, (2, 2) = 7, (2, 3) = 4, (3, 1) = 9, (3, 2) = 6, (3, 3) = 5}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 8, (2, 2) = 9, (2, 3) = 4, (3, 1) = 7, (3, 2) = 6, (3, 3) = 5}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 6, (2, 2) = 5, (2, 3) = 4, (3, 1) = 7, (3, 2) = 8, (3, 3) = 9})]

 

[]

 

52

 

25

 

36

(1)


Below we find 12,440 serpentine paths in the matrix  6x6 starting from various positions (the set  L )

k:=0:  n:=6:
for i from 1 to n do
for j from i to n do
k:=k+1; S[k]:=SerpentinePaths([n,n],[i,j])[];
od: od:
L1:={seq(S[i][], i=1..k)}:
L2:=map(A->A^%T, L1):
L:=L1 union L2:
nops(L);

12440

(2)


Further, using the list  L, we generate 20 examples of Numbrix puzzles with the unique solutions

T:='T':
N:=20:
M:=[seq(L[i], i=combinat:-randcomb(nops(L),N))]:
for i from 1 to N do
for k from floor(n^2/4) do
T[i]:=Matrix(n,{seq(op(M[i])[3][j], j=combinat:-randcomb(n^2,k))});
if nops(NumbrixPuzzle(T[i]))=1 then break; fi;
od:  od:
T:=convert(T,list):
T1:=[seq([seq(T[i+j],i=1..5)],j=[0,5,10,15])]:
DocumentTools:-Tabulate(Matrix(4,5, (i,j)->T1[i,j]), fillcolor = "LightYellow", width=95):


The solutions of these puzzles

DocumentTools:-Tabulate(Matrix(4,5, (i,j)->NumbrixPuzzle(T1[i,j])[]), fillcolor = "LightYellow", width=95):

 


For some reason, these 20 examples and their solutions did not load here.

 Edit. I separately inserted these generated 20 puzzles as a picture:

 

Download SerpPathsinMatrix.mw

 

First 14 15 16 17 18 19 20 Last Page 16 of 59