Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

am attaching the worksheet of the problem please help me to solve not able to  compute coupled

error.mw

 

restart; with(plots)

PDEtools[declare]((F, T, G, H)(Y), prime = Y)

` F`(Y)*`will now be displayed as`*F

 

` T`(Y)*`will now be displayed as`*T

 

` G`(Y)*`will now be displayed as`*G

 

` H`(Y)*`will now be displayed as`*H

 

`derivatives with respect to`*Y*`of functions of one variable will now be displayed with '`

(1)

p1 := 0.1e-1; p2 := 0.3e-1; p3 := 0.5e-1; p := p1+p2+p3

rf := 1050; kf := .52; cpf := 3617; sigmaf := .8

sigma1 := 25000; rs1 := 5200; ks1 := 6; cps1 := 670

sigma2 := 0.210e-5; rs2 := 5700; ks2 := 25; cps2 := 523

sigma3 := 6.30*10^7; rs3 := 10500; ks3 := 429; cps3 := 235

sigma4 := 10^(-10); rs4 := 3970; ks4 := 40; cps4 := 765

sigma5 := 1.69*10^7; rs5 := 7140; ks5 := 116; cps5 := 390

sigma6 := 4.10*10^7; rs6 := 19300; ks6 := 318; cps6 := 129

``

M := 1; S1 := .5; A := 1; delta := 0.1e-2; g := .1; Gr := .5; betu := .5; bett := .5; Pr := 21; Ec := .5; bet := 1; S2 := .5; Rd := 1; Q := .1; Ra := .5; S := .1

alp := .1

``

``

B1 := 1+2.5*p+6.2*p^2; B2 := 1+13.5*p+904.4*p^2; B3 := 1+37.1*p+612.6*p^2; B4 := (ks1+2*kf-2*p*(kf-ks1))/(ks1+2*kf+p*(kf-ks1)); B5 := (ks2+3.9*kf-3.9*p*(kf-ks2))/(ks2+3.9*kf+p*(kf-ks2)); B6 := (ks3+4.7*kf-4.7*p*(kf-ks3))/(ks3+4.7*kf+p*(kf-ks3)); B7 := (ks4+2*kf-2*p*(kf-ks4))/(ks4+2*kf+p*(kf-ks4)); B8 := (ks5+3.9*kf-3.9*p*(kf-ks5))/(ks5+3.9*kf+p*(kf-ks5)); B9 := (ks6+4.7*kf-4.7*p*(kf-ks6))/(ks6+4.7*kf+p*(kf-ks6))

a1 := B1*p1+B2*p2+B3*p3

a2 := 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf

a3 := 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf)

a4 := B4*p1+B5*p2+B6*p3

``

a5 := 1+3*((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3)/(2+(p1*sigma1+p2*sigma2+p3*sigma3)/((p1+p2+p3)*sigmaf)-((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3))

``

NULL

a6 := B1*p1+B2*p2+B3*p3

a7 := 1-p1-p2-p3+p1*rs4/rf+p2*rs5/rf+p3*rs6/rf

a8 := 1-p1-p2-p3+p1*rs4*cps4/(rf*cpf)+p2*rs5*cps5/(rf*cpf)+p3*rs6*cps6/(rf*cpf)

a9 := B7*p1+B8*p2+B9*p3

``

a10 := 1+3*((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3)/(2+(p1*sigma4+p2*sigma5+p3*sigma6)/((p1+p2+p3)*sigmaf)-((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3))

W := sum(b[i]*Y^i, i = 0 .. 3); Theta := sum(c[i]*Y^i, i = 0 .. 3); U := sum(d[i]*Y^i, i = 0 .. 2); Phi := sum(h[i]*Y^i, i = 0 .. 2)

Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0]

 

Y^3*c[3]+Y^2*c[2]+Y*c[1]+c[0]

 

Y^2*d[2]+Y*d[1]+d[0]

 

Y^2*h[2]+Y*h[1]+h[0]

(2)

F := a1*(1+1/bet)*(diff(W, `$`(Y, 2)))+a2*Ra*(diff(W, Y))+A-a5*M*W-S2*W^2+a2*Gr*Theta-S*betu*(W-U) = 0

9.1682928*Y*b[3]+3.0560976*b[2]+2.433571428*Y^2*b[3]+1.622380952*Y*b[2]+.8111904760*b[1]+1-1.346703274*b[3]*Y^3-1.346703274*b[2]*Y^2-1.346703274*b[1]*Y-1.346703274*b[0]-.5*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2+.8111904760*c[3]*Y^3+.8111904760*c[2]*Y^2+.8111904760*c[1]*Y+.8111904760*c[0]+0.5e-1*d[2]*Y^2+0.5e-1*d[1]*Y+0.5e-1*d[0] = 0

(3)

T := (a4+Rd)*(diff(Theta, `$`(Y, 2)))+a3*Pr*Ra*(diff(Theta, Y))+Q*Theta+Pr*alp*S*bett*(Theta-Phi)+Pr*Ec*((1+1/bet)*a1*(diff(W, Y))^2+a5*M*W^2+(1+1/bet)*a1*S1*W^2+S2*W^3+S*betu*(W-U)) = 0

.205*c[1]*Y+.205*c[2]*Y^2+.205*c[3]*Y^3-.525*d[1]*Y-.525*d[2]*Y^2+.525*b[0]+.525*b[1]*Y+.525*b[2]*Y^2+.525*b[3]*Y^3+21.63764058*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2-.105*h[0]+6.799682664*Y*c[3]+30.71903373*Y^2*c[3]+20.47935582*Y*c[2]-.105*Y^2*h[2]-.105*Y*h[1]-.525*d[0]+.205*c[0]+10.23967791*c[1]+2.266560888*c[2]+16.04451240*(3*Y^2*b[3]+2*Y*b[2]+b[1])^2+5.25*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^3 = 0

(4)

G := Ra*(diff(U, Y))+betu*(W-U) = 0

1.0*Y*d[2]+.5*d[1]+.5*b[3]*Y^3+.5*b[2]*Y^2-.5*d[2]*Y^2+.5*b[1]*Y-.5*d[1]*Y+.5*b[0]-.5*d[0] = 0

(5)

H := Ra*(diff(Phi, Y))+bett*(Theta-Phi) = 0

1.0*Y*h[2]+.5*h[1]+.5*c[3]*Y^3+.5*c[2]*Y^2-.5*Y^2*h[2]+.5*c[1]*Y-.5*Y*h[1]+.5*c[0]-.5*h[0] = 0

(6)

BCS := (D(W))(0) = 0, (D(Theta))(0) = 0, W(1) = -delta*(1+1/bet)*(D(W))(1), Theta(1) = 1+g*(D(Theta))(1), U(1) = -delta*(1+1/bet)*(D(W))(1), Phi(1) = 1+g*(D(Theta))(1)

W := unapply(W(Y), Y)

F := unapply(F(Y), Y)

Theta := unapply(Theta(Y), Y)

T := unapply(T(Y), Y)

U := unapply(U(Y), Y)

G := unapply(G(Y), Y)

Phi := unapply(Phi(Y), Y)

H := unapply(H(Y), Y)

z1 := (D(W))(0) = 0

(D(W))(0) = 0

(7)

z2 := (D(Theta))(0) = 0

(D(Theta))(0) = 0

(8)

z3 := W(1) = -delta*(1+1/bet)*(D(W))(1)

b[3](1)+b[2](1)+b[1](1)+b[0](1) = -0.2e-2*(D(W))(1)

(9)

z4 := Theta(1) = 1+g*(D(Theta))(1)

c[3](1)+c[2](1)+c[1](1)+c[0](1) = 1+.1*(D(Theta))(1)

(10)

z5 := U(1) = -delta*(1+1/bet)*(D(W))(1)

d[2](1)+d[1](1)+d[0](1) = -0.2e-2*(D(W))(1)

(11)

z6 := Phi(1) = 1+g*(D(Theta))(1)

h[2](1)+h[1](1)+h[0](1) = 1+.1*(D(Theta))(1)

(12)

z7 := F(0)

1.+3.0560976*b[2](0)+.8111904760*b[1](0)-1.346703274*b[0](0)-.5*b[0](0)^2+.8111904760*c[0](0)+0.5e-1*d[0](0) = 0

(13)

z8 := T(0)

.525*b[0](0)+21.63764058*b[0](0)^2-.105*h[0](0)-.525*d[0](0)+.205*c[0](0)+10.23967791*c[1](0)+2.266560888*c[2](0)+16.04451240*b[1](0)^2+5.25*b[0](0)^3 = 0

(14)

z9 := G(0)

.5*d[1](0)+.5*b[0](0)-.5*d[0](0) = 0

(15)

z10 := H(0)

.5*h[1](0)+.5*c[0](0)-.5*h[0](0) = 0

(16)

z11 := F(1)

10.25516095*b[3](1)+3.331775278*b[2](1)-.5355127980*b[1](1)+1-1.346703274*b[0](1)-.5*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2+.8111904760*c[3](1)+.8111904760*c[2](1)+.8111904760*c[1](1)+.8111904760*c[0](1)+0.5e-1*d[2](1)+0.5e-1*d[1](1)+0.5e-1*d[0](1) = 0

(17)

z12 := T(1)

10.44467791*c[1](1)+22.95091671*c[2](1)+37.72371639*c[3](1)-.525*d[1](1)-.525*d[2](1)+.525*b[0](1)+.525*b[1](1)+.525*b[2](1)+.525*b[3](1)+21.63764058*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2-.105*h[0](1)-.105*h[2](1)-.105*h[1](1)-.525*d[0](1)+.205*c[0](1)+16.04451240*(3*b[3](1)+2*b[2](1)+b[1](1))^2+5.25*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^3 = 0

(18)

z13 := G(1)

.5*d[2](1)+.5*b[3](1)+.5*b[2](1)+.5*b[1](1)+.5*b[0](1)-.5*d[0](1) = 0

(19)

z14 := H(1)

.5*h[2](1)+.5*c[3](1)+.5*c[2](1)+.5*c[1](1)+.5*c[0](1)-.5*h[0](1) = 0

(20)

NULL

Z := fsolve([z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14], {b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3], d[0], d[1], d[2], h[0], h[1], h[2]})

(21)

"F(Y):=eval(sum(b[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"T(Y):=eval(sum(c[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"G(Y):=eval(sum(d[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"H(Y):=eval(sum(h[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

NULL

plot(F(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [9.1682928*Y(Y)*b[3](Y)+3.0560976*b[2](Y)+2.433571428*Y(Y)^2*b[3](Y)+1.622380952*Y(Y)*b[2](Y)+.8111904760*b[1](Y)+1-1.346703274*b[3](Y)*Y(Y)^3-1.346703274*b[2](Y)*Y(Y)^2-1.346703274*b[1](Y)*Y(Y)-1.346703274*b[0](Y)-.5*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2+.8111904760*c[3](Y)*Y(Y)^3+.8111904760*c[2](Y)*Y(Y)^2+.8111904760*c[1](Y)*Y(Y)+.8111904760*c[0](Y)+0.5e-1*d[2](Y)*Y(Y)^2+0.5e-1*d[1](Y)*Y(Y)+0.5e-1*d[0](Y) = 0, Y = 0 .. 1]

 

plot(T(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [.205*c[1](Y)*Y(Y)+.205*c[2](Y)*Y(Y)^2+.205*c[3](Y)*Y(Y)^3-.525*d[1](Y)*Y(Y)-.525*d[2](Y)*Y(Y)^2+.525*b[0](Y)+.525*b[1](Y)*Y(Y)+.525*b[2](Y)*Y(Y)^2+.525*b[3](Y)*Y(Y)^3+21.63764058*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2-.105*h[0](Y)+6.799682664*Y(Y)*c[3](Y)+30.71903373*Y(Y)^2*c[3](Y)+20.47935582*Y(Y)*c[2](Y)-.105*Y(Y)^2*h[2](Y)-.105*Y(Y)*h[1](Y)-.525*d[0](Y)+.205*c[0](Y)+10.23967791*c[1](Y)+2.266560888*c[2](Y)+16.04451240*(3*Y(Y)^2*b[3](Y)+2*Y(Y)*b[2](Y)+b[1](Y))^2+5.25*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^3 = 0, Y = 0 .. 1]

 

plot(G(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [1.0*Y(Y)*d[2](Y)+.5*d[1](Y)+.5*b[3](Y)*Y(Y)^3+.5*b[2](Y)*Y(Y)^2-.5*d[2](Y)*Y(Y)^2+.5*b[1](Y)*Y(Y)-.5*d[1](Y)*Y(Y)+.5*b[0](Y)-.5*d[0](Y) = 0, Y = 0 .. 1]

 

plot(H(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [1.0*Y(Y)*h[2](Y)+.5*h[1](Y)+.5*c[3](Y)*Y(Y)^3+.5*c[2](Y)*Y(Y)^2-.5*Y(Y)^2*h[2](Y)+.5*c[1](Y)*Y(Y)-.5*Y(Y)*h[1](Y)+.5*c[0](Y)-.5*h[0](Y) = 0, Y = 0 .. 1]

 

NULL


 

Download AGM.mw
 

 

eq1:=( d)/(dt)u+(d^(2))/(dy^(2))u + s*( d)/(dy)u + delta * theta = 0;

eq2:=( d)/(dt)theta + (d^(2))/(dy^(2))theta + s*Pr*( d)/(dy)theta +lambda* exp(theta/(1 +(epsilon*theta))) = 0; 

initial and boundary conditons   

t <=0; u = theta = 0, for 0 <= y  <= 1   

t> 0;  u =0, theta = 0   at  y = 0;  

t> 0;  u =1, theta = 0   at   y = 1  ;

where, s, epsilon, Pr, lambda, delta are arbitrary parameters

Hello 

How to remove this error 

3d_plots.mw

Hello,

Can we impliment Artificial Neural Network for nonlinear coupled ODE equation with boundary conditions.? In maple

I wont seen any post regarding ANN in mapleprime.

  restart;

  local gamma:
  local GAMMA:

  odeSystem:= [ (1 + GAMMA)*diff(f(eta), eta$4) - S*(eta*diff(f(eta), eta$3) + 3*diff(f(eta), eta$2)
                +
                diff(f(eta), eta)*diff(f(eta), eta$2) - f(eta)*diff(f(eta), eta$3))
                -
                GAMMA*delta(2*diff(f(eta), eta$2)*diff(f(eta), eta$3)^2 + diff(f(eta), eta$2)^2*diff(f(eta), eta$4))
                -
                M^2*diff(f(eta), eta$2) = 0,

                (1 + (4*R)/3)*diff(theta(eta), eta$2) + Pr*S*(f(eta)*diff(theta(eta), eta)
                -
                eta*diff(theta(eta), eta) + Q*theta(eta)) = 0,

                diff(phi(eta), eta$2) + Sc*S*(f(eta)*diff(phi(eta), eta)
                -
                eta*diff(phi(eta), eta)) - Sc*gamma*phi(eta) = 0
              ];

  params:= [ S = 0.5, GAMMA = 0.1, delta = 0.1, gamma = 0.1, M = 1,
             Pr = 1, Ec = 0.2, Sc = 0.6, R = 1, Q = 1
           ];
  bcs :=[ f(0) = 0, (D@@2)(f)(0) = 0, f(1) = 1, D(f)(1) = 0, D(theta)(0) = 0,
          theta(1) = 1, phi(1) = 1, D(phi)(0) = 0
        ];

how to solve the equations by finite element method

Maple code for solving system of ODE using forward-backward sweep method.

When we specify a set (a sequence of objects enclosed in curly braces), Maple removes duplicates, since the elements of the set must be unique, that is, they cannot be repeated. See below for 2 examples. With the first example  {a<=b  and  b>=a}, everything is in order, since they are one and the same. But Maple treats the same equality, written in two ways  {a=b, b=a} , as different objects. It seems to me that this is not very convenient:

restart;
{a<=b, b>=a}; # OK
{a=b, b=a}; # not OK
is((a=b)=(b=a)); # not OK

                                                  

 

restart;
kp := .3;

Pr := .3; N := .5; g := .5; A := 1; B := 0; M := .5; lambda := .5; Ec := .5;

rf := 997.1; kf := .613; cpf := 4179; `&sigma;f` := 0.5e-1;
p1 := 0.1e-1; sigma1 := 2380000; rs1 := 4250; ks1 := 8.9538; cps1 := 686.2;
p2 := 0.5e-1; sigma2 := 3500000; rs2 := 10500; ks2 := 429; cps2 := 235;

NULL;
a1 := (1-p1)^2.5*(1-p2)^2.5;
a2 := (1-p2)*(1-p1+p1*rs1/rf)+p2*rs2/rf;
a3 := 1+3*((p1*sigma1+p2*sigma2)/`&sigma;f`-p1-p2)/(2+(p1*sigma1+p2*sigma2)/((p1+p2)*`&sigma;f`)-((p1*sigma1+p2*sigma2)/`&sigma;f`-p1-p2));

a4 := (1-p2)*(1-p1+p1*rs1*cps1/(rf*cpf))+p2*rs2*cps2/(rf*cpf);
a5 := (ks1+2*kf-2*p1*(kf-ks1))*(ks2+2*kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-2*p2*(kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-ks2))/((ks1+2*kf+p1*(kf-ks1))*(ks2+2*kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))+2*p2*(kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-ks2)));


OdeSys := (diff(U(Y), Y, Y))/(a1*a2)+Theta(Y)+N*(Theta(Y)*Theta(Y))-a3*(M*M)*U(Y)/a2-(kp*kp)*U(Y)/(a1*a2), a5*(diff(Theta(Y), Y, Y))/a4+Pr*Ec*((diff(U(Y), Y))^2+U(Y)^2*(kp*kp))/(a1*a2); Cond := U(0) = lambda*(D(U))(0), Theta(0) = A+g*(D(Theta))(0), U(1) = 0, Theta(1) = B; Ans := dsolve([OdeSys, Cond], numeric, output = listprocedure);
U := proc (Y) options operator, arrow, function_assign; (eval(U(Y), Ans))(0) end proc;
                 U := Y -> (eval(U(Y), Ans))(0)
Theta := proc (Y) options operator, arrow, function_assign; (eval(Theta(Y), Ans))(0) end proc;
             Theta := Y -> (eval(Theta(Y), Ans))(0)
Theta_b := (int(U(Y)*Theta(Y), Y = 0 .. 1))/(int(U(Y), Y = 0 .. 1));
Error, (in Theta) too many levels of recursion
Q := int(U(Y), Y = 0 .. 1, numeric);
Error, (in Theta) too many levels of recursion
NUMERIC := [(eval((diff(U(Y), Y))/a1, Ans))(0), (eval(-(diff(Theta(Y), Y))/(Theta_b*a5), Ans))(0)];
Error, (in Theta) too many levels of recursion

 

i need the solution  for Y=0 and Y=1

Streamlines, isotherms and microrotations for Re = 1, Pr = 7.2, Gr = 105 and (a) Ha = 0 (b) Ha = 30 (c) Ha = 60 (d) Ha = 100.

 

Fig. 2

for Ra = 105Ha = 50, Pr = 0.025 and θ = 1 − Y

 

 

eqat := {M . (D(theta))(0)+2.*Pr . f(0) = 0, diff(phi(eta), eta, eta)+2.*Sc . f(eta) . (diff(phi(eta), eta))-(1/2)*S . Sc . eta . (diff(phi(eta), eta))+N[t]/N[b] . (diff(theta(eta), eta, eta)) = 0, diff(g(eta), eta, eta)-2.*(diff(f(eta), eta)) . g(eta)+2.*f(eta) . (diff(g(eta), eta))-S . (g(eta)+(1/2)*eta . (diff(g(eta), eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . g(eta)-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . g(eta) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, diff(theta(eta), eta, eta)+2.*Pr . f(eta) . (diff(theta(eta), eta))-(1/2)*S . Pr . eta . (diff(theta(eta), eta))+N[b] . Pr . ((diff(theta(eta), eta)) . (diff(phi(eta), eta)))+N[t] . Pr . ((diff(theta(eta), eta))^2)+4/3 . N . (diff((C[T]+theta(eta))^3 . (diff(theta(eta), eta)), eta)) = 0, diff(f(eta), eta, eta, eta)-(diff(f(eta), eta))^2+2.*f(eta) . (diff(f(eta), eta))+g(eta)^2-S . (diff(f(eta), eta)+(1/2)*eta . (diff(f(eta), eta, eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . (diff(f(eta), eta))-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . (diff(f(eta), eta)) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, g(0) = 1, g(6) = 0, phi(0) = 1, phi(6) = 0, theta(0) = 1, theta(6) = 0, (D(f))(0) = 1, (D(f))(6) = 0};
sys1 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys2 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys3 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys4 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys5 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys6 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys7 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys8 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys9 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys10 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys11 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys12 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys13 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys14 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys15 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys16 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
 

restart;

OdeSys := diff(U(Y), Y, Y)+Theta(Y)+N*(Theta(Y)*Theta(Y))-(M*M)*U(Y) = 0, diff(Theta(Y), Y, Y)+E*(diff(U(Y), Y))^2 = 0;

Cond := U(0) = lambda*(D(U))(0), Theta(0) = A+g*(D(Theta))(0), U(1) = 0, Theta(1) = B; sys := [OdeSys, Cond];
Ans := dsolve(sys);

I find it difficult to use dsolve to solve system of ordinary differential equations with assigned parameters and initial conditions. The error message "Error, (in dsolve/numeric) 'parameters' must be specified as a list of unique unassigned names" kept coming up.

Pls see the uploaded equation for more understanding

restart

interface(imaginaryunit = F)

I

(1)

I

I

(2)

sqrt(-4)

2*I

(3)

NULL

Suscep := diff(S(t), t) = theta*epsilon+v__2*S__v(t)-S(t)*lambda-S(t)*(µ+v__1)

diff(S(t), t) = theta*varepsilon+v__2*S__v(t)-S(t)*lambda-S(t)*(µ+v__1)

(4)

Vacc := diff(S__v(t), t) = (1-theta)*epsilon+v__1*S(t)-(µ+alpha+v__2)*S__v(t)-(1-w)*S__v(t)*lambda

Immun := diff(V(t), t) = alpha*S__v(t)+`&rho;__A`*A(t)+(1-k)*`&rho;__Q`*Q(t)+`&rho;__I`*(I)(t)-µ*V(t)

Exp := diff(E(t), t) = S(t)*lambda+(1-w)*S__v(t)*lambda-(q__E+delta+µ)*E(t)

Asymp := diff(A(t), t) = delta*a*E(t)-(`&rho;__A`+µ)*A(t)+k*`&rho;__Q`*Q(t)

Inf := diff((I)(t), t) = delta*(1-a)*E(t)-(`&rho;__I`+q__I+`&delta;__I`+µ)*(I)(t)

Quar := diff((I)(t), t) = q__E*E(t)+q__I*(I)(t)-(`&rho;__Q`+`&delta;__Q`+µ)*Q(t)

init_conds := S(0) = S_0, S__v(0) = S__v*_0, V(0) = V_0, E(0) = E_0, A(0) = A_0, (I)(0) = I_0, Q(0) = Q_0

S(0) = S_0, S__v(0) = S__v*_0, V(0) = V_0, E(0) = E_0, A(0) = A_0, I(0) = I_0, Q(0) = Q_0

(5)

sys := {Asymp, Exp, Immun, Inf, Quar, Suscep, Vacc, init_conds}

``

sol := dsolve(sys, numeric, parameters = [`&delta;__Q`, `&delta;__I`, a, k, epsilon, v[1], q[E], q[I], q[A], eta[A], eta[Q], rho[A], rho[Q], rho[I], v[2], alpha, mu, delta, alpha, beta, w, lambda, S_0, S__v*_0, V_0, E_0, A_0, I_0, Q_0], method = rkf45)

Error, (in dsolve/numeric) 'parameters' must be specified as a list of unique unassigned names

 

sol(parameters = [delta = .125, `&delta;__Q` = 0.6847e-3, epsilon = .464360344, `&delta;__I` = 0.2230e-8, a = .6255, q[E] = 0.18113e-3, k = .15, v__1 = 0.5e-1, v__2 = 0.6e-1, `&rho;__Q` = 0.815e-1, `&rho;__A` = .1, `&rho;__I` = 0.666666e-1, q__I = 0.1923e-2, q__A = 0.4013e-7, `&eta;__A` = .1213, `&eta;__Q` = 0.3808e-2*alpha and 0.3808e-2*alpha = .4, w = .5925, mu = 0.464360344e-4, lambda = 0.1598643e-7, S_0 = 1.0, S__v*_0 = 0.6e-4, V_0 = 0.35e-4, E_0 = 0.5e-4, I_0 = 0.32e-4, A_0 = 0.15e-4, Q_0 = 0.1e-4])

sol(parameters = [delta = .125, delta__Q = 0.6847e-3, varepsilon = .464360344, delta__I = 0.2230e-8, a = .6255, q[E] = 0.18113e-3, k = .15, v__1 = 0.5e-1, v__2 = 0.6e-1, rho__Q = 0.815e-1, rho__A = .1, rho__I = 0.666666e-1, q__I = 0.1923e-2, q__A = 0.4013e-7, eta__A = .1213, false, w = .5925, mu = 0.464360344e-4, lambda = 0.1598643e-7, S_0 = 1.0, S__v*_0 = 0.6e-4, V_0 = 0.35e-4, E_0 = 0.5e-4, I_0 = 0.32e-4, A_0 = 0.15e-4, Q_0 = 0.1e-4])

(6)

Evaluate*the*system*at*t = 2

sol(2)

sol(2)

(7)

sol(1)

sol(1)

(8)

sol(.1)

sol(.1)

(9)

sol(.3)

sol(.3)

(10)

sol(.5)

sol(.5)

(11)

sol(.7)

sol(.7)

(12)

sol(.9)

sol(.9)

(13)

sol(1.1)

sol(1.1)

(14)

sol(1.3)

sol(1.3)

(15)

sol(1.5)

sol(1.5)

(16)

 

 

Download Covid19_Simulation.mw

odeSys := {diff(Theta(x), x, x)+Pr*(R*(diff(Theta(x), x))*f(x)+Nb*(diff(Theta(x), x))*(diff(Phi(x), x))+Nt*(diff(Theta(x), x))^2), N2*(diff(G(x), x, x))-N1*(2*G(x)+diff(f(x), x, x))-N3*R*((diff(f(x), x))*G(x)-f(x)*(diff(G(x), x))), diff(Phi(x), x, x)+R*Sc*f(x)*(diff(Phi(x), x))+Nt*(diff(Theta(x), x, x))/Nb, (1+N1)*(diff(g(x), x, x))+R*((diff(g(x), x))*f(x)-g(x)*(diff(f(x), x)))-M*g(x)+2*Kr*(diff(f(x), x)), (1+N1)*(diff(f(x), x, x, x, x))-R*((diff(f(x), x))*(diff(f(x), x, x))-f(x)*(diff(f(x), x, x, x)))+N1*(diff(G(x), x, x))-M*(diff(f(x), x, x))-2*Kr*(diff(g(x), x))}; cond := f(0) = 0, (D(f))(0) = 1, g(0) = 0, Theta(0) = 1, G(0) = -n*((D@@2)(f))(0), Phi(0) = 1, f(1) = lambda, (D(f))(1) = 0, g(1) = 0, Theta(1) = 0, G(1) = n*((D@@2)(f))(1), Phi(1) = 0; ans := {};

n := .5; N1 := 0.; N2 := 1.0; N3 := .1; lambda := .1; M := .1; Kr := .1; Sc := 1.0; Nb := .1; Pr := 1.0; Nt := .1; R := .5;

ans := dsolve*{cond, eval*odeSys};

hello these are the pde and Boundary conditions  i want to calculate the value of f''(0) ,Theta(0) and  Phi(0)

what is the proper cammand to get the table values for the given equation
NBVs := [eval(ans(N1*G(x)+(1+N1)*(diff(f(x), x, x))), x = 0), eval(ans(-(diff(Theta(x), x))), x = 0), eval(ans(-(diff(Phi(x), x))), x = 0)];

Hi,

I want to solve system of PDE equations by maple and i dont know how can i write it codes that can solve them for me. Can you create the code for the equation

Thank you

Good day,
 

1. Please I need your greatest help. Can anyone please help me to run the examples on the attached papers on Maple software?

 2. Also help me to plot the graphs along with the exact solution

 3. If possible with tables

 I tried but did not get the results as expected. I shall be very grateful if I can get assistance from you

 

Thanks
 

4 5 6 7 8 9 10 Last Page 6 of 63