Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

Just around a month after the first release I am glad to announce the second public release of this project.

Changes from last release:

  • added angled cuts to beam ends
  • fixed bug for bolt connections with thick steel plates
  • rewrite check if fasteners are placed within beams
  • removed some obsolete procedures in NODEFunctions
  • minor changes in XML file headers

For more information see https://github.com/Anthrazit68/NODEMaple.

i found solution of PDE but there is some different from my solution and paper solution so there is must be a mistake becuase he solved by maple too he mentioned in the paper i try to figure out but i can't see any mistake from my solution can anyone watch where i did mistake, i change some letter in finding parameter but they are same like p=k&h=A&n=p&w=n

here is paper solution 

parameter-different.mw

I was trying to look for an easy way to plot the locations of the distance and midpoint on a graph. I found how to get the distance and midpoint functions but plotting them is hard.

Thanks in advance.

 

with(Student:-Precalculus)

with(Plot)

a := [1, 3]

b := [5, 6]

Distance(a, b)

5

(1)

Midpoint(a, b)

[3, 9/2]

(2)

Line(a, b)

y = (3/4)*x+9/4, 3/4, 9/4, -3

(3)

Line(a, b, output = plot)

 
 

 

Download How-to-plot-distance-midpoint.mw

i want to plot density i try to use code of [interactive] but didn't give me density 

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

sol3 := (2*(2*k[2]^2*p[2]^2/p[1]^2+2*k[2]^2))/((-x*k[2]*p[2]/p[1]+y*p[1])^2+(x*k[2]+y*p[2])^2+a[0])-2*(-(2*(-x*k[2]*p[2]/p[1]+y*p[1]))*k[2]*p[2]/p[1]+(2*(x*k[2]+y*p[2]))*k[2])^2/((-x*k[2]*p[2]/p[1]+y*p[1])^2+(x*k[2]+y*p[2])^2+a[0])^2

NULL

lprint(indets(sol3, name))

{x, y, a[0], k[2], p[1], p[2]}

 

P :=   [  a[0]=1.2, k[2]=0.8, p[1]=-0.8, p[2]=0.4]

[a[0] = 1.2, k[2] = .8, p[1] = -.8, p[2] = .4]

(1)

latex(P)

[a_{0} =  1.2, k_{2} =  0.8, p_{1} = - 0.8, p_{2} =  0.4]

 

NULL

Assume some functional form for U(xi)

 

insert numerical values

solnum :=subs(P, sol3);

3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2

(2)

CodeGeneration['Matlab']('3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2')

cg0 = 0.3200000000e1 / ((0.4000000000e0 * x - 0.8e0 * y) ^ 2 + (0.8e0 * x + 0.4e0 * y) ^ 2 + 0.12e1) - 0.5120000000e1 * x ^ 2 / ((0.4000000000e0 * x - 0.8e0 * y) ^ 2 + (0.8e0 * x + 0.4e0 * y) ^ 2 + 0.12e1) ^ 2;

 

 

P := Array(1 .. 3); P[1] := plot3d(map(Re, solnum), x = -20 .. 20, y = -5 .. 5, title = Re); P[2] := plot3d(map(Im, solnum), x = -20 .. 20, y = -5 .. 5, title = Im); P[3] := plot3d(map(abs, solnum), x = -20 .. 20, y = -5 .. 5, title = abs); plots:-display(P)

 

 

 

 

 

 

``

 

 

Q := Array(1 .. 2); Q[1] := plot3d(map(density, solnum), x = -20 .. 20, y = -5 .. 5, title = den); Q[2] := plot3d(map(contour, solnum), x = -20 .. 20, y = -5 .. 5, title = contour); plots:-display(Q)

Warning, expecting only range variables [x, y] in expression density(3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2))+density(-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2) to be plotted but found name density

 

Warning, expecting only range variables [x, y] in expression contour(3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2))+contour(-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2) to be plotted but found name contour

 

 

 

 

 

 

 

 

Download graph-density-countour.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

NULL

T := f(x, t) = g(x, t)^2+h(x, t)^2+a[0]

T1 := g(x, t) = t*n[1]+x*k[1]

T2 := h(x, t) = t*n[2]+x*k[2]

L2 := subs({T1, T2}, T)

f(x, t) = (t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0]

(14)

L3 := eval(pde2, L2)

(2*k[1]*n[1]+2*k[2]*n[2])*((t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0])+3*(2*k[1]^2+2*k[2]^2)^2-(2*(t*n[1]+x*k[1])*k[1]+2*(t*n[2]+x*k[2])*k[2])*(2*(t*n[1]+x*k[1])*n[1]+2*(t*n[2]+x*k[2])*n[2]) = 0

(15)

L4 := collect(L3, [x, t], 'distributed')

((2*k[1]*n[1]+2*k[2]*n[2])*(k[1]^2+k[2]^2)-(2*k[1]^2+2*k[2]^2)*(2*k[1]*n[1]+2*k[2]*n[2]))*x^2-(2*k[1]^2+2*k[2]^2)*(2*n[1]^2+2*n[2]^2)*x*t+((2*k[1]*n[1]+2*k[2]*n[2])*(n[1]^2+n[2]^2)-(2*k[1]*n[1]+2*k[2]*n[2])*(2*n[1]^2+2*n[2]^2))*t^2+(2*k[1]*n[1]+2*k[2]*n[2])*a[0]+3*(2*k[1]^2+2*k[2]^2)^2 = 0

(16)

eqs := {coeffs(L4, [x, t])}

Error, invalid arguments to coeffs

 

NULL

NULL

ans := solve(eqs, vars)

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(17)

NULL

eqI := ans

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(18)

eqpsi := eval(L2, eqI)

f(x, t) = (t*a[2]+a[3])^2+a[5]^2*t^2+a[7]

(19)

eqphi := eval(Y, eqpsi)

w(x, t) = 0

(20)

simplify(eval(pde, eqphi))

 

NULL

Download F-params.mw

I first tried Threads and found that Maple dsolve does not work in threads (see https://www.mapleprimes.com/questions/239602-Error-in-Dsolve-Type-System-Does)

It was suggested there to use Grid instead of Threads. 

Now I got time to try Grid. My first test shows that Grid does not work with dsolve also.

Here is an example where dsolve solves this system of odes,. But when using Grid, Maple gives an internal error 

         Error, (in evalapply) cannot apply non-operator differential equation

Does this means one can't use Threads and also can't use Grid with dsolve? Or Am I doing something wrong?

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1841 and is the same as the version installed in this computer, created 2025, January 3, 8:59 hours Pacific Time.`

restart;

P:=[diff(x(t),t)=t*x(t)-y(t)+exp(t)*z(t),diff(y(t),t)=2*x(t)+t^2*y(t)-z(t),diff(z(t),t)=exp(-t)*x(t)+3*t*y(t)+t^3*z(t)]:

dsolve(P); #no error, Long answer

{x(t) = (exp(t)*y(t)*t^5-(diff(y(t), t))*exp(t)*t^3-2*(exp(t))^2*y(t)*t^2-(diff(y(t), t))*exp(t)*t^2+2*(diff(y(t), t))*(exp(t))^2+t*y(t)*exp(t)+(diff(diff(y(t), t), t))*exp(t)+2*exp(t)*y(t))/(-2*t^3*exp(t)+4*(exp(t))^2+2*exp(t)*t-1), y(t) = DESol({diff(diff(diff(_Y(t), t), t), t)+(-4*(exp(t))^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-2*(exp(t))^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-exp(t)/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^3*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-2*(exp(t))^2*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^3*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^2*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+exp(t)*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+2*(exp(t))^2*t^6/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+2*(exp(t))^2*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^3*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+exp(t)*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+exp(t)*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t)))*(diff(diff(_Y(t), t), t))+(-4*(exp(t))^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-exp(t)/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-exp(t)*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^3*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-6*(exp(t))^2*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-exp(t)*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-2*(exp(t))^2*t^8/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-2*(exp(t))^2*t^7/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^3*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^3*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+2*(exp(t))^2*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^3*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-2*(exp(t))^2*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+2*(exp(t))^2*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*exp(t)*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+exp(t)*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t)))*(diff(_Y(t), t))+(-4*(exp(t))^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-8*(exp(t))^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-3*exp(t)/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+1/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-exp(t)*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-24*(exp(t))^4*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-8*(exp(t))^3*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^2*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-5*exp(t)*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^3*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+16*(exp(t))^2*t^2/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*exp(t)*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+6*(exp(t))^2*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+2*(exp(t))^2*t^9/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^3*t^6/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-6*(exp(t))^2*t^7/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+4*(exp(t))^2*t^6/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+20*(exp(t))^3*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+8*(exp(t))^2*t^5/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))+exp(t)*t^6/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-12*(exp(t))^3*t^3/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-4*(exp(t))^2*t^4/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t))-3*exp(t)*t/(-2*(exp(t))^2*t^3+4*(exp(t))^3+2*(exp(t))^2*t-exp(t)))*_Y(t)}, {_Y(t)}), z(t) = (2*exp(t)*y(t)*t^3-2*(diff(y(t), t))*exp(t)*t^2-2*(diff(y(t), t))*exp(t)*t+2*t*y(t)*exp(t)-t^2*y(t)+2*(diff(diff(y(t), t), t))*exp(t)+4*exp(t)*y(t)+diff(y(t), t))/(-2*t^3*exp(t)+4*(exp(t))^2+2*exp(t)*t-1)}

restart;

 

P:=[diff(x(t),t)=t*x(t)-y(t)+exp(t)*z(t),diff(y(t),t)=2*x(t)+t^2*y(t)-z(t),diff(z(t),t)=exp(-t)*x(t)+3*t*y(t)+t^3*z(t)]:

Grid:-Run(0,dsolve(P)); #gives internal error
Grid:-Wait();

Error, (in evalapply) cannot apply non-operator differential equation

 


This error happens on this specific ode. I tried 2-3 others and did not see an error. So it seems to depend to what the ode is.

Download dsolve_also_fail_in_grid.mw

in help for Grid:-Wait, it has an example where it says

And in help for Grid:-Setup it says

"The numnodes option allows you to specify the number of nodes to be used in subsequent computations.  This option is only available in "local" mode."

Is numnodes supposed to be the same as number of cores on my PC?  If so, then why numnodes=4 says this will insure it run run on 2 core machine?

Is this typo and it should be 4 core machine?

there is must be a problem but i didn't figure out ?  in this command didn't give me my parameter why?
vars1 := indets(eqs1);
ans := solve(eqs1, {a[0], a[1], a[2], a[3], a[4], e[1], k[1], n[1], p[1]});

parameter.mw


 

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

with(plots)

NULL

sol3 := sqrt(2)*sqrt(-tau*gamma)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((2*gamma^3*tau-4*gamma*tau+8*tau^2)/(2*gamma^2)-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma

NULL

lprint(indets(sol3, name))

{alpha, gamma, t, tau, x}

 

NULL

P :=   [ alpha=1, gamma=-2,  tau=3]

[alpha = 1, gamma = -2, tau = 3]

(1)

PP := convert(sol3, polar)

polar(2^(1/2)*abs(tau*gamma)^(1/2)*exp(-Im(gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha))))*abs(tanh(x-tau*t^alpha/alpha)/gamma), argument((-tau*gamma)^(1/2)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma))

(2)

polarplot(sol3, x = -20 .. 20, t = 0 .. 10, axis[radial] = [color = "Blue"])

NULL

Download polar.mw

How i can find parameter after substitution in our pde 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

N = 1

N = 1

(14)

S := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

(15)

A := eval(pde2, S)

(a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0

(16)

simplify((a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0)

a[0]*a[1]*exp(t*n[1]+x*k[1])*k[1]*(k[1]^3+n[1]) = 0

(17)

%/exp(t*n[1]+x*k[1])

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(18)

PPP := %

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(19)

Co := solve(PPP, {a[0], a[1], k[1], n[1]})

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}, {a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1]}

(20)

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}

(21)

F := subs(case1, S)

f(x, t) = a[0]+a[1]*exp(-t*k[1]^3+x*k[1])

(22)

F1 := eval(Y, F)

u(x, t) = 2*a[1]*k[1]^2*exp(-t*k[1]^3+x*k[1])/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))-2*a[1]^2*k[1]^2*(exp(-t*k[1]^3+x*k[1]))^2/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))^2

(23)

pdetest(F1, pde)

0

(24)

N = 2

N = 2

(25)

S2 := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

(26)

eq5 := normal(eval(pde2, S2))

exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]^4-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^3*k[2]+6*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^2*k[2]^2-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*k[2]^3+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[1]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[2]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[1]+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[2]+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]*n[2]+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]*n[1]+exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]*n[1]+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]^4+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]^4+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^3*k[2]+6*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^2*k[2]^2+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*k[2]^3+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[2] = 0

(27)

indets(eq5)

{t, x, a[0], a[1], a[2], a[3], k[1], k[2], n[1], n[2], exp(t*n[1]+x*k[1]), exp(t*n[2]+x*k[2]), exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])}

(28)

eq6 := eval(eq5, {t*n[1]+x*k[1] = X, t*n[2]+x*k[2] = Y}); indets(eq6)

Error, invalid input: exp expects its 1st argument, x, to be of type algebraic, but received u(x,t) = 2*diff(diff(f(x,t),x),x)/f(x,t)-2*diff(f(x,t),x)^2/f(x,t)^2

 

{eq6}

(29)

``

NULL

NULL

NULL

NULL

S3 := f(x, t) = a[0]+sum(exp(t*n[i]+x*k[i]), i = 1 .. 3)+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

f(x, t) = a[0]+exp(t*n[1]+x*k[1])+exp(t*n[2]+x*k[2])+exp(t*n[3]+x*k[3])+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

(30)

NULL

NULL

eq5 := normal(eval(pde2, S3))

 

``

Download N-soliton.mw

I want to calculate Hodge Star of forms on a solvable Lie algebra L, I have defined a metric tensor g on it. But when I use that g to compute the Hodge Star of an operator it tells me that the g is not a metric tensor.

with(DifferentialGeometry);
with(LieAlgebras);
A := Matrix(4, 4, [[A__11, A__12, A__13, A__14], [A__21, -A__11, A__23, A__24], [-A__24, -A__23, -A__11, A__21], [-A__14, -A__13, A__12, A__11]]);
x := [x__1, x__2, x__3, x__4, x__5, x__6];
StructureEquations := [[x[6], x[1]] = a*x[1], [x[6], x[2]] = add(A[1, i]*x[i + 1], i = 1 .. 4), [x[6], x[3]] = add(A[2, i]*x[i + 1], i = 1 .. 4), [x[6], x[4]] = add(A[3, i]*x[i + 1], i = 1 .. 4), [x[6], x[5]] = add(A[4, i]*x[i + 1], i = 1 .. 4)];
L := LieAlgebraData(StructureEquations, [x[1], x[2], x[3], x[4], x[5], x[6]], Alg1);
DGsetup(L);
with(Tensor);
e := [e1, e2, e3, e4, e5, e6];
theta := [theta1, theta2, theta3, theta4, theta5, theta6];
omega := evalDG(add(theta[i] &wedge theta[7 - i], i = 1 .. 3));
g := evalDG(add(theta[i] &t theta[7 - i], i = 1 .. 3));
HodgeStar(g, theta1)

It is showing the following error,

Error, (in DifferentialGeometry:-Tensor:-HodgeStar) expected 1st argument to be a metric tensor. Received: _DG([["tensor", Alg1, [["cov_bas", "cov_bas"], []]], [`...`]])

How can I correct this? If not is there an alternative of doing what I am trying to do?

i try to get same result by substituation but i don't know what is mistake after i take second derivative is wronge i don't know how get same result as in paper did can anyone help  to calculate this part is not hard but is complicated ,How calculated second derivative and put in our ode to get the parameters?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

declare(Omega(x, y, t)); declare(U(xi)); declare(u(x, y, t)); declare(Q(xi)); declare(V(xi)); declare(W(xi)); declare(f(xi))

Omega(x, y, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

 

W(xi)*`will now be displayed as`*W

 

f(xi)*`will now be displayed as`*f

(2)

NULL

ode := -delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

-delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

(3)

ode1 := -delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(4)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

(5)

S := U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

(6)

``

n := 2

2

(7)

eval(ode1, S)

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(8)

Download complex-issue.mw

How do I generate a plot within a plot as shown in my example below? The fundemental issue is plot structures like Histogram() etc are not images and so combining them in the way I imagine is non-trivial. I couldn't find a standard way to do this in the help section.

Plot_within_a_plot.mw

restart

NULL``

with(plots)

NULL

Consider the two plots p1 and p2.

NULL

p1 := plot(sin(x), size = [300, 300])

 

p2 := plot(sin(x), view = [0 .. Pi, .5 .. 1], size = [300, 300], axes = boxed)

 

NULL

How do I generate a plot within a plot as shown below, if I calculated the plots ahead of time? Is there a standard way to do this?

NULL

NULL

NULL

Download Plot_within_a_plot.mw

Is there an easy way to get the midpoint and distance in maple?

Thanks in advance.

Distance and Midpoint

 

 

Table 1: Key Skills

NULLdmf1 := [-3, 1]

[-3, 1]

(1)

dmf2 := [3, 2]

[3, 2]

(2)

dmf3 := [-2, -3]

[-2, -3]

(3)

dmf4 := [3, -2]

[3, -2]

(4)

dmf := [dmf1, dmf2, dmf3, dmf4]

[[-3, 1], [3, 2], [-2, -3], [3, -2]]

(5)

plot(dmf)

 

NULL

dme1a1 := [1, 3]

[1, 3]``

(6)

dme1a2 := [5, 6]

[5, 6]

(7)

dme1a3 := [5, 3]

[5, 3]

(8)

dme1 := [dme1a1, dme1a2, dme1a3]

[[1, 3], [5, 6], [5, 3]]

(9)

plot(dme1)

 

NULL

``

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Download 2.1-Distance_and_Midpoint.mw

Can maple simplify a Combined Inequality? At best it outputs imho a more complicated solution.

Thanks in Advance.

sl10 := -1 <= (3-5*x)*(1/2) and (3-5*x)*(1/2) <= 9

0 <= 5/2-(5/2)*x and -(5/2)*x <= 15/2

(1)

The output should be:

 

-3 <= x and x <= 1


Download Combined_Inequality.mw

First 11 12 13 14 15 16 17 Last Page 13 of 43