Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

I’m currently trying to collect terms in an expression f^G(xi), but the result is not behaving as expected. I attempted two different coding approaches, but both resulted in errors. This particular case of collecting terms seems to be different from what I’ve encountered before, and I’m unsure how to resolve it.

Could you please advise on how to properly collect the terms in this situation and avoid the errors? Any insight into why this case behaves differently would also be appreciated.

Thank you for your help.

collect_term.mw

I am currently working with an ordinary differential equation (ODE) that I find difficult to express and solve accurately. In this ODE, the symbol f represents an exponential function rather than a typical variable, which adds to the confusion. Although I have followed the format used in related research papers, the results I obtain are not satisfactory.

Since this type of ODE is new and somewhat unfamiliar to me, I would greatly appreciate your guidance in:

  1. Properly formulating the ODE.

  2. Understanding the role of f in the context of exponential functions.

  3. Finding the correct and complete solutions.

  4. Learning how to clearly present each solution step by step.

Thank you in advance for your support.

AA.mw

Manually factoring each equation in this system one by one is time-consuming and inefficient. Is there a way to automate the factoring of expressions into two multiplicative terms—some of which may be single-term factors—using code?

restart

with(PDEtools)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

G1 := 5*lambda^2*alpha[1]^4*alpha[0]*a[4]+lambda^2*alpha[1]^4*a[3]-10*lambda*alpha[1]^2*alpha[0]^3*a[4]+lambda*k^2*a[1]*alpha[1]^2-6*lambda*alpha[1]^2*alpha[0]^2*a[3]+alpha[0]^5*a[4]-k^2*a[1]*alpha[0]^2-3*lambda*alpha[1]^2*alpha[0]*a[2]+alpha[0]^4*a[3]+lambda*w*alpha[1]^2+alpha[0]^3*a[2]-w*alpha[0]^2+((lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1])*(diff(G(xi), xi))+lambda^2*beta[0]*a[5]*alpha[1]^2-4*mu*lambda*alpha[1]^4*a[3]+5*lambda^2*beta[0]*alpha[1]^4*a[4]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]+12*mu*alpha[1]^2*alpha[0]^2*a[3]+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*lambda*alpha[1]^2*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*lambda*alpha[1]^2*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3]-2*w*alpha[0]*beta[0]+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*mu*w*alpha[1]^2)/G(xi)+((1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-k^2*a[1]*beta[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-(1/4)*lambda*beta[0]^2*a[1]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-20*mu*lambda*beta[0]*alpha[1]^4*a[4]-7*mu*lambda*beta[0]*a[5]*alpha[1]^2+(2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-4*lambda*beta[0]*alpha[1]^3*a[3]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4]-mu*lambda*alpha[1]^3*a[5]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]-2*k^2*a[1]*alpha[1]*beta[0]-(1/2)*lambda*beta[0]*alpha[1]*a[1]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))-w*beta[0]^2)/G(xi)^2+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+3*beta[0]^2*alpha[1]*a[2]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)+8*mu*beta[0]*alpha[1]^3*a[3]-2*lambda*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]-6*mu^2*alpha[1]^3*a[5]-10*lambda*beta[0]^2*alpha[1]^3*a[4]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+beta[0]^3*a[2]-14*mu^2*beta[0]*a[5]*alpha[1]^2+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+mu*beta[0]^2*a[1]-lambda*beta[0]^3*a[5]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3])/G(xi)^3+((4*beta[0]^3*alpha[1]*a[3]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^3*a[5]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+20*mu*beta[0]^2*alpha[1]^3*a[4]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+20*mu*beta[0]^3*alpha[1]^2*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*alpha[1]^4*a[4]+beta[0]^4*a[3]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+3*mu*beta[0]^3*a[5]+5*beta[0]^4*alpha[0]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4))/G(xi)^4+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5]+5*beta[0]^4*alpha[1]*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4])*(diff(G(xi), xi))+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+beta[0]^5*a[4])/G(xi)^5 = 0

indets(G1)

{k, lambda, mu, w, xi, B[1], B[2], a[1], a[2], a[3], a[4], a[5], alpha[0], alpha[1], beta[0], G(xi), diff(G(xi), xi)}

(2)

``

(3)

eq0 := 5*lambda^2*a[4]*alpha[0]*alpha[1]^4+lambda^2*a[3]*alpha[1]^4-10*lambda*a[4]*alpha[0]^3*alpha[1]^2+k^2*lambda*a[1]*alpha[1]^2-6*lambda*a[3]*alpha[0]^2*alpha[1]^2+a[4]*alpha[0]^5-k^2*a[1]*alpha[0]^2-3*lambda*a[2]*alpha[0]*alpha[1]^2+a[3]*alpha[0]^4+lambda*w*alpha[1]^2+a[2]*alpha[0]^3-w*alpha[0]^2 = 0

``

eq1 := lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1] = 0

eq2 := lambda^2*beta[0]*a[5]*alpha[1]^2+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*alpha[1]^2*lambda*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]+12*mu*alpha[1]^2*alpha[0]^2*a[3]-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2+5*lambda^2*beta[0]*alpha[1]^4*a[4]-4*mu*lambda*alpha[1]^4*a[3]-2*mu*w*alpha[1]^2+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*w*alpha[0]*beta[0]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3] = 0

NULL

eq3 := (1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-9*mu^2*alpha[1]^2*a[1]*(1/4)-w*beta[0]^2+3*beta[0]^2*alpha[0]*a[2]-(1/4)*lambda*beta[0]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

eq4 := 2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0]-2*k^2*a[1]*alpha[1]*beta[0]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]-4*lambda*beta[0]*alpha[1]^3*a[3]-lambda*alpha[1]^3*mu*a[5]-(1/2)*lambda*beta[0]*alpha[1]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4] = 0

eq5 := -6*mu^2*alpha[1]^3*a[5]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+3*beta[0]^2*alpha[1]*a[2]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+8*mu*beta[0]*alpha[1]^3*a[3]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)-10*lambda*beta[0]^2*alpha[1]^3*a[4]-2*lambda*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5] = 0

eq6 := -14*mu^2*beta[0]*a[5]*alpha[1]^2+beta[0]^3*a[2]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3]-lambda*beta[0]^3*a[5]+mu*beta[0]^2*a[1]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4] = 0

eq7 := 4*beta[0]^3*alpha[1]*a[3]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*mu*a[5]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+20*mu*beta[0]^2*alpha[1]^3*a[4]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4] = 0

eq8 := 4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+beta[0]^4*a[3]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+20*mu*beta[0]^3*alpha[1]^2*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4)+5*beta[0]^4*alpha[0]*a[4]+3*mu*beta[0]^3*a[5]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*alpha[1]^4*a[4] = 0

eq9 := (10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+5*beta[0]^4*alpha[1]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5] = 0

eq10 := (2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+beta[0]^5*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4] = 0

 

with(LargeExpressions)

COEFFS := solve({eq0, eq1, eq10, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {w, a[1], a[2], alpha[0], alpha[1], beta[0]})

Download by_hand!.mw

Substituting the solutions into the ODE doesn't yield zero, despite the code appearing correct—suggesting either complexity, symbolic limits, or an implementation issue.

 

 

17-ode.mw

 

also in this ode why solution is like this how i can fixed this too

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

ode := diff(G(xi), xi) = sqrt(C*G(xi)^4+B*G(xi)^2+A)

diff(G(xi), xi) = (C*G(xi)^4+B*G(xi)^2+A)^(1/2)

(2)

dsolve(ode, G(xi))

xi-Intat(1/(C*_a^4+B*_a^2+A)^(1/2), _a = G(xi))+c__1 = 0

(3)
 

NULL

Download v1.mw

I'm trying to collect all terms involving the expression diff(G(xi), xi)/G(xi) in a symbolic equation using . While it's straightforward to do this by hand, I want to automate it in code — ideally by extracting the coefficient of this entire expression directly. However, when I use collect, Maple treats diff(G(xi), xi) and G(xi) separately, and I can't seem to group terms properly by the full ratio diff(G(xi), xi)/G(xi).

Is there a clean way or built-in Maple function to automatically collect or isolate the coefficient of diff(G(xi), xi)/G(xi) as a whole, without having to manually substitute or restructure the expression?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

L := (-6*f^3*g*a[2]+6*f*g^3*a[2]+6*f*g*a[2]^2)*(diff(G(xi), xi))^4/G(xi)^4+(f*g^3*(10*lambda*a[2]+2*a[1])-f^3*g*(10*lambda*a[2]+2*a[1])+12*f*g*a[1]*a[2])*(diff(G(xi), xi))^3/G(xi)^3+(f*g^3*(2*a[2]*lambda^2+3*lambda*a[1]+10*mu*a[2]+2*a[2]*(lambda^2-mu))-4*f*p*a[2]-6*k*l*a[2]-f^3*g*(2*a[2]*lambda^2+3*lambda*a[1]+10*mu*a[2]+2*a[2]*(lambda^2-mu))+6*f*g*(2*a[0]*a[2]+a[1]^2))*(diff(G(xi), xi))^2/G(xi)^2+(f*g^3*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*lambda*a[2]*mu)-4*f*p*a[1]-6*k*l*a[1]-f^3*g*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*lambda*a[2]*mu)+12*f*g*a[0]*a[1])*(diff(G(xi), xi))/G(xi)+f*g^3*(lambda*mu*a[1]+2*mu^2*a[2])-4*f*p*a[0]-6*k*l*a[0]-f^3*g*(lambda*mu*a[1]+2*mu^2*a[2])+6*f*g*a[0]^2 = 0

(-6*f^3*g*a[2]+6*f*g^3*a[2]+6*f*g*a[2]^2)*(diff(G(xi), xi))^4/G(xi)^4+(f*g^3*(10*lambda*a[2]+2*a[1])-f^3*g*(10*lambda*a[2]+2*a[1])+12*f*g*a[1]*a[2])*(diff(G(xi), xi))^3/G(xi)^3+(f*g^3*(3*lambda*a[1]+2*a[2]*lambda^2+10*mu*a[2]+2*a[2]*(lambda^2-mu))-4*f*p*a[2]-6*k*l*a[2]-f^3*g*(3*lambda*a[1]+2*a[2]*lambda^2+10*mu*a[2]+2*a[2]*(lambda^2-mu))+6*f*g*(2*a[0]*a[2]+a[1]^2))*(diff(G(xi), xi))^2/G(xi)^2+(f*g^3*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*a[2]*lambda*mu)-4*f*p*a[1]-6*k*l*a[1]-f^3*g*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*a[2]*lambda*mu)+12*f*g*a[0]*a[1])*(diff(G(xi), xi))/G(xi)+f*g^3*(lambda*mu*a[1]+2*mu^2*a[2])-4*f*p*a[0]-6*k*l*a[0]-f^3*g*(lambda*mu*a[1]+2*mu^2*a[2])+6*f*g*a[0]^2 = 0

(2)

``

(3)

collect(%, {1/(diff(G(xi), xi)), G(xi)})

(-6*f^3*g*a[2]+6*f*g^3*a[2]+6*f*g*a[2]^2)*(diff(G(xi), xi))^4/G(xi)^4+(f*g^3*(10*lambda*a[2]+2*a[1])-f^3*g*(10*lambda*a[2]+2*a[1])+12*f*g*a[1]*a[2])*(diff(G(xi), xi))^3/G(xi)^3+(f*g^3*(3*lambda*a[1]+2*a[2]*lambda^2+10*mu*a[2]+2*a[2]*(lambda^2-mu))-4*f*p*a[2]-6*k*l*a[2]-f^3*g*(3*lambda*a[1]+2*a[2]*lambda^2+10*mu*a[2]+2*a[2]*(lambda^2-mu))+6*f*g*(2*a[0]*a[2]+a[1]^2))*(diff(G(xi), xi))^2/G(xi)^2+(f*g^3*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*a[2]*lambda*mu)-4*f*p*a[1]-6*k*l*a[1]-f^3*g*(a[1]*(lambda^2-mu)+3*a[1]*mu+6*a[2]*lambda*mu)+12*f*g*a[0]*a[1])*(diff(G(xi), xi))/G(xi)+f*g^3*(lambda*mu*a[1]+2*mu^2*a[2])-4*f*p*a[0]-6*k*l*a[0]-f^3*g*(lambda*mu*a[1]+2*mu^2*a[2])+6*f*g*a[0]^2 = 0

(4)

L1 := %

num := numer(lhs(L)); num := expand(num); num_collected := collect(num, [1/(diff(G(xi), xi)), G(xi)]); eqs := [seq(coeff(num_collected, {1/(diff(G(xi), xi)), G(xi)}, i) = 0, i = 0 .. 8)]

[(-6*f^3*g*a[2]+6*f*g^3*a[2]+6*f*g*a[2]^2)*(diff(G(xi), xi))^4+(-10*f^3*g*lambda*a[2]+10*f*g^3*lambda*a[2]-2*f^3*g*a[1]+2*f*g^3*a[1]+12*f*g*a[1]*a[2])*G(xi)*(diff(G(xi), xi))^3+(-4*f^3*g*lambda^2*a[2]+4*f*g^3*lambda^2*a[2]-3*f^3*g*lambda*a[1]-8*f^3*g*mu*a[2]+3*f*g^3*lambda*a[1]+8*f*g^3*mu*a[2]+12*f*g*a[0]*a[2]+6*f*g*a[1]^2-4*f*p*a[2]-6*k*l*a[2])*G(xi)^2*(diff(G(xi), xi))^2+(-f^3*g*lambda^2*a[1]-6*f^3*g*lambda*mu*a[2]+f*g^3*lambda^2*a[1]+6*f*g^3*lambda*mu*a[2]-2*f^3*g*mu*a[1]+2*f*g^3*mu*a[1]+12*f*g*a[0]*a[1]-4*f*p*a[1]-6*k*l*a[1])*G(xi)^3*(diff(G(xi), xi))+(-f^3*g*lambda*mu*a[1]-2*f^3*g*mu^2*a[2]+f*g^3*lambda*mu*a[1]+2*f*g^3*mu^2*a[2]+6*f*g*a[0]^2-4*f*p*a[0]-6*k*l*a[0])*G(xi)^4 = 0, 0 = 0, 0 = 0, 0 = 0, 0 = 0, 0 = 0, 0 = 0, 0 = 0, 0 = 0]

(5)

Download collect-coe.mw

I’m trying to verify a solution given in the form from  using Maple's odeTest. Even though the paper claims the solution satisfies the ODE, Maple does not simplify the result to zero. Could someone explain why the test fails or suggest the correct way to verify it in Maple?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(u(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

NULL

ode := diff(G(xi), xi) = G(xi)*sqrt(A+B*G(xi)^2)

diff(G(xi), xi) = G(xi)*(A+B*G(xi)^2)^(1/2)

(3)

S1 := G(xi) = -sqrt(A/B)*csch(sqrt(A)*(xi+xi[0]))

G(xi) = -(A/B)^(1/2)*csch(A^(1/2)*(xi+xi[0]))

(4)

res := simplify(odetest(S1, ode))

(A/B)^(1/2)*csch(A^(1/2)*(xi+xi[0]))*(A^(1/2)*coth(A^(1/2)*(xi+xi[0]))+(A*coth(A^(1/2)*(xi+xi[0]))^2)^(1/2))

(5)

S2 := G(xi) = sqrt(-A/B)*sec(sqrt(-A)*(xi+xi[0]))

G(xi) = (-A/B)^(1/2)*sec((-A)^(1/2)*(xi+xi[0]))

(6)

res := simplify(odetest(S2, ode))

(-A/B)^(1/2)*sec((-A)^(1/2)*(xi+xi[0]))*((-A)^(1/2)*tan((-A)^(1/2)*(xi+xi[0]))-(-A*tan((-A)^(1/2)*(xi+xi[0]))^2)^(1/2))

(7)

S3 := G(xi) = sqrt(-A/B)*sech(sqrt(A)*(xi+xi[0]))

G(xi) = (-A/B)^(1/2)*sech(A^(1/2)*(xi+xi[0]))

(8)

res := simplify(odetest(S3, ode))

(-A^(1/2)*tanh(A^(1/2)*(xi+xi[0]))-(A*tanh(A^(1/2)*(xi+xi[0]))^2)^(1/2))*(-A/B)^(1/2)*sech(A^(1/2)*(xi+xi[0]))

(9)

S4 := G(xi) = sqrt(-A/B)*csc(sqrt(-A)*(xi+xi[0]))

G(xi) = (-A/B)^(1/2)*csc((-A)^(1/2)*(xi+xi[0]))

(10)

res := simplify(odetest(S4, ode))

(-(-A)^(1/2)*cot((-A)^(1/2)*(xi+xi[0]))-(-A*cot((-A)^(1/2)*(xi+xi[0]))^2)^(1/2))*(-A/B)^(1/2)*csc((-A)^(1/2)*(xi+xi[0]))

(11)

S5 := G(xi) = cos(sqrt(-A)*(xi+xi[0]))+sin(sqrt(-A)*(xi+xi[0]))

G(xi) = cos((-A)^(1/2)*(xi+xi[0]))+sin((-A)^(1/2)*(xi+xi[0]))

(12)

res := simplify(odetest(S5, ode))

(cos((-A)^(1/2)*(xi+xi[0]))-sin((-A)^(1/2)*(xi+xi[0])))*(-A)^(1/2)+(B*sin(2*(-A)^(1/2)*(xi+xi[0]))+A+B)^(1/2)*(-cos((-A)^(1/2)*(xi+xi[0]))-sin((-A)^(1/2)*(xi+xi[0])))

(13)

S6 := G(xi) = 1/(sqrt(B)*(xi+xi[0]))

G(xi) = 1/(B^(1/2)*(xi+xi[0]))

(14)

odetest(S6, subs(A = 0, ode))

-csgn(1/(xi+xi[0]))/(B^(1/2)*(xi+xi[0])^2)-1/(B^(1/2)*(xi+xi[0])^2)

(15)

S7 := G(xi) = 1/(sqrt(-B)*(xi+xi[0]))

G(xi) = 1/((-B)^(1/2)*(xi+xi[0]))

(16)

odetest(S7, subs(A = 0, ode))

-(-1/(xi+xi[0])^2)^(1/2)*xi[0]/((-B)^(1/2)*(xi+xi[0])^2)-(-1/(xi+xi[0])^2)^(1/2)*xi/((-B)^(1/2)*(xi+xi[0])^2)-1/((-B)^(1/2)*(xi+xi[0])^2)

(17)

ode2 := diff(G(xi), xi) = A+B*G(xi)^2

diff(G(xi), xi) = A+B*G(xi)^2

(18)

S8 := G(xi) = sgn(A)*sqrt(A/B)*tan(sqrt(A*B)*(xi+xi[0]))

G(xi) = sgn(A)*(A/B)^(1/2)*tan((A*B)^(1/2)*(xi+xi[0]))

(19)

res := simplify(odetest(S8, ode2))

(sgn(A)*(A*B)^(1/2)*(tan((A*B)^(1/2)*xi[0])^2+1)*(tan((A*B)^(1/2)*xi)^2+1)*(A/B)^(1/2)-A*((tan((A*B)^(1/2)*xi)+tan((A*B)^(1/2)*xi[0]))^2*sgn(A)^2+(tan((A*B)^(1/2)*xi[0])*tan((A*B)^(1/2)*xi)-1)^2))/(tan((A*B)^(1/2)*xi[0])*tan((A*B)^(1/2)*xi)-1)^2

(20)

NULL

S9 := G(xi) = -sgn(A)*sqrt(A/B)*cot(sqrt(A*B)*(xi+xi[0]))

G(xi) = -sgn(A)*(A/B)^(1/2)*cot((A*B)^(1/2)*(xi+xi[0]))

(21)

res := simplify(odetest(S9, ode2))

(sgn(A)*(A*B)^(1/2)*(cot((A*B)^(1/2)*xi[0])^2+1)*(cot((A*B)^(1/2)*xi)^2+1)*(A/B)^(1/2)-A*((cot((A*B)^(1/2)*xi[0])*cot((A*B)^(1/2)*xi)-1)^2*sgn(A)^2+(cot((A*B)^(1/2)*xi[0])+cot((A*B)^(1/2)*xi))^2))/(cot((A*B)^(1/2)*xi[0])+cot((A*B)^(1/2)*xi))^2

(22)

NULL

S9 := G(xi) = sgn(A)*sqrt(-A/B)*tanh(sqrt(-A*B)*(xi+xi[0]))

G(xi) = sgn(A)*(-A/B)^(1/2)*tanh((-A*B)^(1/2)*(xi+xi[0]))

(23)

res := simplify(odetest(S9, ode2))

(A*(sgn(A)^2-1)*cosh(2*(-A*B)^(1/2)*(xi+xi[0]))-sgn(A)^2*A+2*sgn(A)*(-A/B)^(1/2)*(-A*B)^(1/2)-A)/(1+cosh(2*(-A*B)^(1/2)*(xi+xi[0])))

(24)

NULL

S10 := G(xi) = sgn(A)*sqrt(-A/B)*coth(sqrt(-A*B)*(xi+xi[0]))

G(xi) = sgn(A)*(-A/B)^(1/2)*coth((-A*B)^(1/2)*(xi+xi[0]))

(25)

odetest(S10, ode2)

(sgn(A)^2*A*cosh(2*(-A*B)^(1/2)*(xi+xi[0]))+sgn(A)^2*A-2*sgn(A)*(-A/B)^(1/2)*(-A*B)^(1/2)-A*cosh(2*(-A*B)^(1/2)*(xi+xi[0]))+A)/(-1+cosh(2*(-A*B)^(1/2)*(xi+xi[0])))

(26)

NULL

S11 := G(xi) = -1/(B*(xi+xi[0]))

G(xi) = -1/(B*(xi+xi[0]))

(27)

odetest(S11, subs(A = 0, ode2))

0

(28)

S12 := G(xi) = A*(xi+xi[0])

G(xi) = A*(xi+xi[0])

(29)

odetest(S12, subs(B = 0, ode2))

0

(30)

Download Z1.mw

Why doesn't this ODE return zero when using odetest? Did I do something wrong?

Would you like help checking the equation or debugging the issue?

restart

with(PDEtools)

declare(P(mu))

P(mu)*`will now be displayed as`*P

(1)

assume(A::real, r::real, rho::real, lambda::real)

Psol := P(mu) = 2*A*lambda/((A^2+r)*exp(lambda*rho*mu)+r*exp(-lambda*rho*mu))

P(mu) = 2*A*lambda/((A^2+r)*exp(lambda*rho*mu)+r*exp(-lambda*rho*mu))

(2)

ode := (diff(P(mu), mu))^2-rho^2*P(mu)^2*(1+r*P(mu)^2) = 0

(diff(P(mu), mu))^2-rho^2*P(mu)^2*(1+r*P(mu)^2) = 0

(3)

res := odetest(Psol, ode)

4*A^6*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+8*r*A^4*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-24*A^4*lambda^4*rho^2*exp(4*lambda*rho*mu)*r/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^6*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+4*A^2*r^2*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^2*lambda^4*rho^2*exp(4*lambda*rho*mu)*r^2/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+4*A^2*r^2*rho^2*lambda^4*exp(2*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*r*A^4*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^4*lambda^2*rho^2*exp(4*lambda*rho*mu)*r/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^2*r^2*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^2*lambda^2*rho^2*exp(4*lambda*rho*mu)*r^2/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^2*r^2*rho^2*lambda^2*exp(2*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4

(4)

simplify(res)

4*lambda^2*exp(2*lambda*rho*mu)*(((-2*lambda^2-2)*r^2+(-6*lambda^2-2)*A^2*r)*exp(2*lambda*rho*mu)+(lambda+1)*((A^2+r)^2*exp(4*lambda*rho*mu)+r^2)*(lambda-1))*A^2*rho^2/((A^2+r)*exp(2*lambda*rho*mu)+r)^4

(5)

P_hyper := P(mu) = 2*A*lambda/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))

P(mu) = 2*A*lambda/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))

(6)

res_hyper := simplify(odetest(P_hyper, ode), symbolic)

-16*A^4*lambda^2*rho^2*r*(lambda^2+1)/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))^4

(7)
 

NULL

Download ode.mw

I’m trying to test a specific function as a solution to a nonlinear ODE in Maple. The equation is of the Riccati type, and my candidate solution involves parameters A, B, and C.

I've used assuming to specify the condition (4AC−B2)>0 and (4AC - B^2) <0, but when I use odetest to verify the solution, I still get a nonzero result. Additionally, when I apply the assumption, Maple sometimes introduces a negation sign in the output (e.g., changing sqrt(...) into -sqrt(...)), which wasn't part of the original solution.

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

E := diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

(2)

S1 := G(xi) = (sqrt(4*A*C-B^2)*tan((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))-B)/(2*C)

G(xi) = (1/2)*((4*A*C-B^2)^(1/2)*tan((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))-B)/C

(3)

odetest(S1, E)

0

(4)

S2 := G(xi) = -(sqrt(4*A*C-B^2)*cot((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*cot((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(5)

odetest(S2, E)

0

(6)

assume(4*A*C-B^2 < 0)

S3 := G(xi) = -(sqrt(4*A*C-B^2)*tanh((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*tanh((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(7)

odetest(S3, E)

-2*A+(1/2)*B^2/C

(8)

Download A2.mw

i did every thing coreectly but nothing happen not apply where is my mistake?

``

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(2)

SS := diff(G(xi), xi) = sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))

diff(G(xi), xi) = (r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(3)

Se := sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2)) = diff(G(xi), xi)

(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2) = diff(G(xi), xi)

(4)

dub := diff(SS, xi)

diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(5)

Dubl2 := simplify(diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2))

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(6)

subs(SA, Dubl2)

diff((r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2), xi) = (1/2)*r^2*G(xi)*(4*l*G(xi)^2+3*b*G(xi)+2*a)

(7)

subs(Se, Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(8)

subs(lhs(Se) = rhs(Se), Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(9)
 

NULL

Download subs.mw

I tried solving this ODE, but my result is very different from the expected one. How can I correctly obtain the solution? Also, is there a way to include both the positive and negative signs (±) in the equation so that the final result reflects both possibilities?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

(3)

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(4)

S1 := dsolve(S, G(xi))

G(xi) = (1/2)*(-b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -(1/2)*(b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), G(xi) = -4*a*exp(xi*r*a^(1/2))/(exp(c__1*r*a^(1/2))*(4*a*l-b^2+2*b*exp(xi*r*a^(1/2))/exp(c__1*r*a^(1/2))-(exp(xi*r*a^(1/2)))^2/(exp(c__1*r*a^(1/2)))^2))

(5)

S2 := S1[3]

G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2))

(6)

normal(G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), ':-expanded')

G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2)

(7)

simplify(G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2))

G(xi) = -4*a*exp(a^(1/2)*r*(c__1+xi))/(4*a*l*exp(2*xi*r*a^(1/2))-b^2*exp(2*xi*r*a^(1/2))+2*b*exp(a^(1/2)*r*(c__1+xi))-exp(2*c__1*r*a^(1/2)))

(8)

convert(%, trig)

G(xi) = -4*a*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))/(4*a*l*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))-b^2*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))+2*b*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))-cosh(2*c__1*r*a^(1/2))-sinh(2*c__1*r*a^(1/2)))

(9)

convert(S1[3], trig)

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2))

(10)

simplify(G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2)))

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))/((4*a*l-b^2)*cosh(xi*r*a^(1/2))^2+((8*a*l-2*b^2)*sinh(xi*r*a^(1/2))+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2))))*cosh(xi*r*a^(1/2))+(4*a*l-b^2)*sinh(xi*r*a^(1/2))^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*sinh(xi*r*a^(1/2))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2)

(11)
   

Download tt.mw

In this work, I do not intend to expand all the variables across the monomials. Instead, I want to restrict the distribution to only the variables x,y,z,tx, y, z, tx,y,z,t, possibly raising them to appropriate powers as needed, until I obtain the desired solution and satisfy the conditions of my PDE tests. However, I am uncertain whether "monomial" is the correct term to use here.

S1.mw

trail-1.mw

I have a list of candidate solutions. Some of them satisfy my PDE test (i.e., they make the PDE equal to zero), while others do not. How can I separate the solutions that satisfy the PDE from those that do not?

Trail-pdetest.mw

How to modify the ND procedure to handle derivatives with respect to more than three independent variables for higher-dimensional PDEs, it is work for [x,t] i want  it work for [x,y,z,t] , 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

alias(F=F(x, t), G=G(x, t))

F, G

(2)

with(PDEtools):
undeclare(prime):

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

ND := proc(F, G, U)
  local v, w, f, g, a:
  v := op(F):
  if v[1] in U then w := -v[1] else w := v[1] end if:
  if v[2] in U then w := w, -v[2] else w := w, v[2] end if:
  f := op(0, F):
  g := op(0, G):
  a := diff(f(w)*g(v), U);
  convert(subs([w]=~[v], a), diff)
end proc:

ND(F, G, [x]);
ND(F, G, [t]);

-(diff(F, x))*G+F*(diff(G, x))

 

-(diff(F, t))*G+F*(diff(G, t))

(4)

ND(F, F, [x]);
ND(F, F, [x, x]);

0

 

2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2

(5)

ND(F, G, [x$3]);

-(diff(diff(diff(F, x), x), x))*G+3*(diff(diff(F, x), x))*(diff(G, x))-3*(diff(F, x))*(diff(diff(G, x), x))+F*(diff(diff(diff(G, x), x), x))

(6)

ND(F, F, [x$3, t]);

2*F*(diff(diff(diff(diff(F, t), x), x), x))-2*(diff(diff(diff(F, x), x), x))*(diff(F, t))-6*(diff(diff(diff(F, t), x), x))*(diff(F, x))+6*(diff(diff(F, x), x))*(diff(diff(F, t), x))

(7)

NULL

NULL

#if i collect P1+P1+...+P7 it must get equation 26 in paper so i want define the up proc to open but is not for (3+1) dimesnion,

P1 := 9*ND(F, F, [x, t])

18*F*(diff(diff(F, t), x))-18*(diff(F, x))*(diff(F, t))

(8)

NULL

P2 := -5*ND(F, F, [`$`(x, 3), y])

0

(9)

P3 := ND(F, F, [`$`(x, 6)])

2*F*(diff(diff(diff(diff(diff(diff(F, x), x), x), x), x), x))-12*(diff(diff(diff(diff(diff(F, x), x), x), x), x))*(diff(F, x))+30*(diff(diff(diff(diff(F, x), x), x), x))*(diff(diff(F, x), x))-20*(diff(diff(diff(F, x), x), x))^2

(10)

P4 := -5*ND(F, F, [`$`(y, 2)])

0

(11)

P5 := alpha*ND(F, F, [`$`(x, 2)])

alpha*(2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2)

(12)

P6 := beta*ND(F, F, [x, y])

0

(13)

P7 := gamma*ND(F, F, [x, z])

0

(14)

Download define.mw

I try to construct a system of coefficient but  i don't know why distribute of them is not working, beside this there is any other way for build this kind of systems 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

H1 := int(pde_linear, x)

(diff(u(x, y, z, t), z))*delta+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))-5*(int(diff(diff(u(x, y, z, t), y), y), x))+9*(diff(u(x, y, z, t), t))+diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x)-5*(diff(diff(diff(u(x, y, z, t), x), x), y))

(7)

L := eval(H1, H) = 0

-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t) = 0

(8)

numer(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0)) = numer(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))

2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(9)

simplify(2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3 = 0)

2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+10*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+2*(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+2*(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-240*(diff(f(x, y, z, t), x))^6+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-2*f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(10)

F1 := %*(1/2)

(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+15*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+5*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+9*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-5*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-120*(diff(f(x, y, z, t), x))^6+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(11)

collect(F1, {alpha, beta, f(x, y, z, t)})

(-f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x)))*alpha+(-(diff(f(x, y, z, t), y))*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y)))*beta+((diff(diff(f(x, y, z, t), x), z))*delta+diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))+9*(diff(diff(f(x, y, z, t), t), x))-5*(diff(diff(f(x, y, z, t), y), y)))*f(x, y, z, t)^5+(-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))-15*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2+5*(diff(f(x, y, z, t), y))*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))+15*(diff(diff(f(x, y, z, t), x), y))*(diff(diff(f(x, y, z, t), x), x))-((diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2)*f(x, y, z, t)^4+(30*(diff(f(x, y, z, t), x))^2*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-30*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))+120*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))-30*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*(diff(diff(f(x, y, z, t), x), x))+30*(diff(diff(f(x, y, z, t), x), x))^3)*f(x, y, z, t)^3+(-120*(diff(f(x, y, z, t), x))^3*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2)*f(x, y, z, t)^2+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-120*(diff(f(x, y, z, t), x))^6 = 0

(12)

NULL

T := f(x, y, z, t) = g(x, y, z, t)^2+h(x, y, z, t)^2+a[11]

T1 := g(x, y, z, t) = t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5]

T2 := h(x, y, z, t) = t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10]

L2 := subs({T1, T2}, T)

f(x, y, z, t) = (t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11]

(13)

L3 := eval(F1, L2)

30*(2*a[1]^2+2*a[6]^2)^3*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3-270*(2*a[1]^2+2*a[6]^2)^2*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2+(alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+360*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^4*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+15*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(2*a[1]*a[2]+2*a[6]*a[7]))*(2*a[1]^2+2*a[6]^2)+(beta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3)*(2*a[1]*a[2]+2*a[6]*a[7])+9*(2*a[1]*a[4]+2*a[6]*a[9])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+(2*a[1]*a[3]+2*a[6]*a[8])*delta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-5*(2*a[2]^2+2*a[7]^2)*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-120*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^6+30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2-(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4-((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(beta*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])+(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[3]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[8])*delta+18*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[4]+18*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[9])*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+5*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4 = 0

(14)

L4 := collect(L3, [x, y, z, t], 'distributed')

Warning,  computation interrupted

 

` `

(15)

Download systems.mw

5 6 7 8 9 10 11 Last Page 7 of 45