Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

restart; with(linalg); with(stats); with(plots); with(Statistics); with(LinearAlgebra); 


s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800;
c := 300; n := 200; tau1 := 99; tau2 := 120;

Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := n*(int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1));
200. - 200. exp(-0.01119474511 gam0 - 0.5541398828 gam1)
n2 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a .. a+tau2-tau1));

g1 := -n1(gam0, gam1)*(int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2(gam0, gam1)*(int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

g2 := -n1*(int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2*(int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

solve({g1 = 0, g2 = 0}, {gam0, gam1})

I want to find the answer of gam0 and gam1. It takes me 20 hours until now...and still evaluating...

Please Help ..

I can't directly copy Maple code into messages but have to insert into Word first, apply some changes that for better readability and copy it from there via Word-paste. Is there a direct way?

there is a solution of equation,so the equation can be divided by the solution,but because the equation is complex,it can't be simplify by the soution,can anyone give me some help?thanks a lot.

a curve has residual p if it is linked, in a complete intersection, to a curve with residual p-1

0 residual if is a complete intersection of two surfaces

do complete intersection means two surfaces totally overlapped?

why they are not the same one if complete intersection?

Hi there,

this may be a common task but did not find any helpful hint nor an answer: is there any way to combine to arrays A and B into another one element-wise, i.e.:
C = [[A[1],B[1]], [A[2],B[2]],...,[A[N],B[N]]]
without doing a for loop?


Thanks,
jon

1. if parametric equations are
x0 = a^4, x1=a^3*b, x2=a^2*b^2, x3=a*b^3, x4=b^4

how to find ideal below

e12 = x0*x2-x1^2
e13 = x0*x3-x1*x2
e14 = x0*x4-x1*x3
e23 = x1*x3-x2^2
e24 = x1*x4-x2*x3
e34 = x2*x4-x3^2

2.
if let y_i = x_i/x0 for i = 1..4
how to find above parametrically by below equations
y1 = b
y2 = b^2
y3 = b^3
y4 = b^4

the functions about vector field plot is so terrible,

is there any method to get it beautiful, like mathematica or matlab?

more options is needed for arrow's position, length, angle and color.

is there a plan for it?

And, the scalar field plot in 2d is better than vector field plot, but in 3d, isosurface plot are still need to be enhanced.

If possible, the plots in Plotting Guide are all need improve.

f := x^2+y-z=0

f2:= y^2 +z-x = 0

after shift , solution shift too, can it be said it is invariant in parameter shift?

if not, any example to show a function which is invariant in parameter shift?

> solve(f);
/ 2 \
{ x = x, y = -x + z, z = z }
\ /
> f2 := y^2+z-x;
2
y + z - x
> solve(f2);
/ 2 \
{ x = y + z, y = y, z = z }
\ /
> f;
2
x + y - z = 0

Hello Maple


I am preparing for an examination in Calculus, but my worksheet in Maple 18 doesn't cooperate. 

A lot of my studypartners use Maple 16 and they have no problems. 


I meet the following error: 

- Error, (in solve) invalid input: hastype expects 2 arguments, but received 1


I'm totally sure, that I'm typing correctly, because I write just the same as my studypartners. 
So is it an error, which only is seen in Maple 18 and can I do anything to solve the problem?

Kind regards
Anders Kristensen

PS: I can't figure out how to add a picture

Hi there,

I would like to have an operator (in this case, the natural logarithm) applied to a list/array of points defined as:

ydata := [0.572594976618e-1, 0.327865007249e-1, 0.280821589546e-1, 0.114365745192e-1, 0.578537931608e-2, 0.139154661062e-2, 0.641467839994e-3, 0.18013801847e-3];

How can I apply Maple's ln() operator to the whole array (i.e. avoid to apply it to ydata [1], ydata [2], etc.)?

Thank you,

jon

 

Hello friends!

I 'm a student and I don't know a lot about Maple, so I would be really grateful if anyone could help me.

I want to solve a system of two equations and I have two unknowns, which are k and εα. However I don't know what I am doing wrong and I can't solve it.

I have attached my file.

Thank you very much in advance!agogos_2.mw

 

I want to solve maximize of equation,but the maximize failed to solve it,who can help me.thanks.

c[1] := (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+(1/(z^2+1))^(3/2)+1}+(1/8)*{x/((x+y+z)^2+1)+x/((x+y)^2+1)+x/((x+z)^2+1)+x/(x^2+1)}:

c[2] := (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+[1/(z^2+1)]^(3/2)+1}+(1/8)*{y/((x+y+z)^2+1)+y/((x+y)^2+1)+y/((y+z)^2+1)+y/(y^2+1)}:

t[1] := diff(c[1], x);

(1/8)*w*{-(3/2)*(1/((x+y+z)^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/((x+y)^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/((x+z)^2+1))^(1/2)*(2*x+2*z)/((x+z)^2+1)^2-3*(1/(x^2+1))^(1/2)*x/(x^2+1)^2}+(1/8)*{1/((x+y+z)^2+1)-x*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-x*(2*x+2*y)/((x+y)^2+1)^2+1/((x+z)^2+1)-x*(2*x+2*z)/((x+z)^2+1)^2+1/(x^2+1)-2*x^2/(x^2+1)^2}

(1)

t[2] := diff(c[2], y);

(1/8)*w*{-(3/2)*(1/((x+y+z)^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/((x+y)^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/((y+z)^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}+(1/8)*{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}

(2)

eliminate({t[1], t[2]}, w);

[{w = -{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}/{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}}, {{1/((x+y+z)^2+1)-x*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-x*(2*x+2*y)/((x+y)^2+1)^2+1/((x+z)^2+1)-x*(2*x+2*z)/((x+z)^2+1)^2+1/(x^2+1)-2*x^2/(x^2+1)^2}*{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}-{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}*{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(x^2+2*x*z+z^2+1))^(1/2)*(2*x+2*z)/((x+z)^2+1)^2-3*(1/(x^2+1))^(1/2)*x/(x^2+1)^2}}]

(3)

w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*sqrt(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*sqrt(1/(x^2+2*x*y+y^2+1))*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*sqrt(1/(y^2+2*y*z+z^2+1))*(2*y+2*z)/((y+z)^2+1)^2-3*sqrt(1/(y^2+1))*y/(y^2+1)^2);

w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2)

(4)

sub(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), c[1]);

sub(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+(1/(z^2+1))^(3/2)+1}+(1/8)*{x/((x+y+z)^2+1)+x/((x+y)^2+1)+x/((x+z)^2+1)+x/(x^2+1)})

(5)

subs(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), c[2]);

-(1/8)*(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+[1/(z^2+1)]^(3/2)+1}/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2)+(1/8)*{y/((x+y+z)^2+1)+y/((x+y)^2+1)+y/((y+z)^2+1)+y/(y^2+1)}

(6)

"#"Iwant to maximize the equation (5)and (6),under the conditon of x,y,z are negative or positive at the same time.

 

NULL

 

Download maximize.mw

Dear All,

I'm trying to solve the following in Maple.

minimize(int(0.1e-3+.5*t+0.2e-2*t^2-b*t-a, t = 0 .. 300), location = true)

But Maple told me that the answer is

Float(-infinity), {[{a = Float(infinity), b = Float(infinity)}, Float(-infinity)]}.

I really need to get a kind of numerical answer. Would it be possible? Please Help me!!

In brief the problem can be stated as follows:

 

Given dependent variables Qi i=1,...,N and independent variables xi, yi, and zi i=1,...,N

which are related via the following system of N linear equations with parameters P1, P2 and P3 :

Qi = P1xi+P2yi+P3zi   i=1,...,N

How to find the optimal values of  P1, P2 and P3 which satisfy the above system of linear equations subject to the following constraints:

Pi>=0   i=1,2,3

and  P1>=P2P3

 Without the requirement of P1>=P2P3, the problem can be solved with the Non-negative Least Squares Method of Lawson and Hanson.  But with this additional constraint, I am stuck.  

 

Your suggestions are welcome.

 

 

 

 

I'd like to plot the following inequalities:

sqrt(x)<=1/sqrt(2)

1/sqrt(2)<sqrt(x)<=1/sqrt(2)

 

First 210 211 212 213 214 215 216 Last Page 212 of 2230