Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

if I find fourier intergra solution if 1/pi∫ (form infintiy to 0)(a*cos(u*x)+u*sin(u*x))/a^2+u^2 du. can you polt the function to the integral converges? and can you plot the fourier intergral on a=1 and -1<=x<=3 with 0<=u<=20?

Hi

Is there any way to program a button component to stop current calculations and restart maple server?
Thank you.

If I type the following:

a := 1

a2 := 1.5

a*a2

 

When I press enter

I want it to display the expression without evaluating and then the result:

(1)*(1.5)

 

By default the program displays  1.5.  Is it possible to display it this way?

Please have a visit of this qestion `http://math.stackexchange.com/q/574843/8581`. I did a very elementary attempt there for example for a function:

 > with(plots):
      h := x->piecewise(x < -2, x+3, x <= 2, 5-x^2, 3-x):
      t:=x->h(-x):
      a:= plot(h(x), x = 0 .. 10, color = red, thickness = 3):
      b:= plot(t(x), x = -10 .. 0, color = green, thickness = 3):
      display(a,b);

But  I am eager to know  the formal codes if they exists. Thanks for your time.

I was successful in getting the Maple add-in to load into Excel 2013 but the help file accessed in the Add-In Ribbon is not found.  Does anyone know where in Excel that file can be loaded?

Hi, I have encountered a difficult question.

 

My answer is A=151,B = 47.

Could anyone tell me whether this answer is correct?

 

The question is as follow:

Pi=∑((120n2+An+B)/(16n((512n4 + 1024n3 + 712n2 + 194n + 15))  (n starts from 0 to infinity)

 

Thanks in advance.

Good morning sir.

 

I request your kind support to the above cited question.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Hi there..

I have a question on how to do a pointplot.

 

before plotting, I need to know the value of lambda[j] and  all the values of lambda already have.

so now I need to plot a graph with the values of lambda with different range and different colour,

 

Let say I have


> for j from 17 to 32 do k[j] := j+1;

x[j] := add(P[j, 1], j = j-1 .. j+2);

X[j] := add(P[j, 1]^2, j = j-1 .. j+2);

y[j] := add(P[j, 2], j = j-1 .. j+2);

Y[j] := add(P[j, 2]^2, j = j-1 .. j+2);

xy[j] := add(P[j, 1]*P[j, 2], j = j-1 .. j+2);

cx[j] := evalf(x[j]/k[j]);

cy[j] := evalf(y[j]/k[j]);

c11[j] := evalf(X[j]/k[j]-cx[j]^2);

c22[j] := evalf(Y[j]/k[j]-cy[j]^2);

c12[j] := evalf(xy[j]/k[j]-cx[j]*cy[j]);

C[j] := evalf(Matrix(2, 2, [[c11[j], c12[j]], [c12[j], c22[j]]]));

E[j] := simplify(fnormal(LinearAlgebra[Eigenvalues](C[j])));

if E[j][1] > E[j][2] then lambda[j] := E[j][2]/(E[j][1]+E[j][2]) else lambda[j] := E[j][1]/(E[j][1]+E[j][2])  end if;

lambda[j];

 end do;

the range of lambda [j] are as follows:

 0.02< lambda [j]<0.06

 0.06< lambda [j]<0.12

 0.12< lambda [j]<0.18

 

for i from 17 to 32, do if   0.02< lambda [j]<0.06 then green[i]:=P[i,j]; j:=i+1 elif

 0.06< lambda [j]<0.12 then red[i]:=P[i,j];j:=i+1 ; elif 0.12< lambda [j]<0.18 then blue[i]:=P[i,j];j:=i+1 end if;end do

how to do a point plot with the above situation so that in my plotting all the information are on the same graph.

 

All help is greatly appreciated.

Thanks

 

 

 

Im trying to plot the different values of shanks as points in this ] loop.

pp:=0.0:sumn:=0:sumnm1:=0:sumnp1:=0:

for i from 1 to 60 do

if(n>2) then sumnm1:=sumn fi;

if (n>1) then sumn:=sumnp1 fi; p:=1/evalf(2*beta*BesselJ(2,zeros[i])+epsilon*zeros[i]*BesselJ(0,zeros[i])+zeros[i]*BesselJ(1,zeros[i])); pp:=pp+p;

sumnp1:=pp;

if (n>2) then shanks:=(sumnp1*sumnm1-sumn*sumn)/(sumnp1-2*sumn+sumnm1) fi;

shanks;

od;

sumnp1: -2*sumn+sumnm1:

I have tried plotting it but it only plots the last value. 

Many thanks James

I have 2nd order nonlinear ode I try to solve with Runge Kutta 4th order method in maple but all I get from the out is 1 and 0.This is the equation: theta_ode.mw . How do I do it Or how do I write the code to solve it with maple using  Runge Kutta 4th order method?

Hello

 

I am not that good at english, but i will try to tell you what my problem is. 

 

I have a worksheet in maple where i can't find out to make the results appear. 

 

Maybe it is easiere for you guys to help me if i can send you the document. 

 

Looking forward to hear form you


Regards

Niclas 

Dear All,

please help me with my problem. i have quite a big program all parts of which are distributed in the several code edit regions and in the main text. i'd like to find all occurenses of gven text in all open documents including code edit regions. i know how to do it manually by openening each code edit regiong and pressing Ctrl-F. however it is very time consuming and defocuses me apart from my main tasks. i'd prefer to use some combinations of 'hot keys' on the keybord or one or two mouse clicks as for example in MS Visual Studio.  

I am creating a plot in Maple17 which will include many line segments and polygons.  I want the axes to be equally scaled, so that line segments that are perpendicular actually look perpendicular.  When I view what I have created so far, line segments that are perpendicular do not appear to be so in a plot, even though I used the "scaling=constrained" option several times.  I created a stripped-down file that isolates the problem.  Here it is:

restart:

with(plots):

segp := proc(pt1, pt2)
  description "plot of line segment between two points";
  local m;
 m:=Matrix([pt1,pt2]):
  polygonplot(m,thickness=1,scaling=constrained);
end proc:

slope := proc(pt1, pt2)
  description "slope of line segment btwn two different points";
  (pt2[2]-pt1[2])/(pt2[1]-pt1[1])
end proc:

 

 

pa9:=[0.1864032968, 0.9824733131];

[.1864032968, .9824733131]

(1)

pa16:=[0.6816387600, 0.7316888689];

[.6816387600, .7316888689]

(2)

pd9:=[0.05940746930, 0.7316888689];

[0.5940746930e-1, .7316888689]

(3)

slope(pa9,pa16)*slope(pa9,pd9);

-1.000000000

(4)

display({segp(pa9,pa16),segp(pa9,pd9)},scaling=constrained);

 

 

 

 


Download perp.mw

 



An angle that should be a right angle looks obtuse in the plot.  I used "scaling=constrained" in both the "display" command and the "segp" procedure.  I am using "polygonplot" to plot line segments (degenerate polygons) because the final plot will contain genuine polygons and this seemed like the easiest way to do it.  If this is a bad idea for some reason I can change it.

 

GS

restart;
with(plots):
with(Optimization):
with(LinearAlgebra):
with(Statistics):
with(DEtools):
x11 := <0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2>;
y11 := <-21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748>;
z11 := <1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475>;
ICS:=[x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]];
N := Dimension(x11)-1:
sys1 := [Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)];
SS := proc(k1,k2,k3,k5,k6,k7,k9,k10,k11)
local F, V;
if not type([k1,k2,k3,k5,k6,k7,k9,k10,k11],[numeric,numeric,numeric,numeric,numeric,numeric,numeric,numeric,numeric]) then return 'SS'(k1,k2,k3,k5,k6,k7,k9,k10,k11);
elif k1<0 or k2<0 or k3<0 or k5<0 or k6<0 or k7<0 or k9<0 or k10<0 or k11<0 then return 1e100;
end if;
F := dsolve(eval({Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t),x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]},{:-k1=k1,:-k2=k2,:-k3=k3,:-k5=k5,:-k6=k6,:-k7=k7,:-k9=k9,:-k10=k10,:-k11=k11}), [x1(t),y1(t),z1(t)], numeric, output=Array([seq(k,k=0..N)]));
V := convert(Column(F[2,1],2),Vector);
Norm(V-x11,2);
Norm(V-y11,2);
Norm(V-z11,2);
end proc:
params := NLPSolve(SS(k1,k2,k3,k5,k6,k7,k9,k10,k11), method=nonlinearsimplex, initialpoint=[k1=.1, k2=.1, k3=.1, k5=.1, k6=.1, k7=.1, k9=.1, k10=.1, k11=.1],evaluationlimit=200):

Warning, limiting number of function evaluations reached

reference from 

http://www.maplesoft.com/applications/view.aspx?SID=1667

when debug

k1=.1; k2=.1; k3=.1; k5=.1; k6=.1; k7=.1; k9=.1; k10=.1; k11=.1;
F := dsolve({Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t), Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t), Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t),x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1]}, [x1(t),y1(t),z1(t)], numeric, output=Array([seq(k,k=0..N)]));

 

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)
Error, (in dsolve/numeric) Array/array solutions cannot be obtained for ODE containing unassigned global variables {k1, k10, k11, k2, k3, k5, k6, k7, k9}

x11 := Vector([0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]):
y11 := Vector([ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]):
z11 := Vector([ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]):

 

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t) + k4*u(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t) + k8*u(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t) + k12*u(t);
d1 := Diff(u(t), t) = 0;
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];
solL:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
ans:=proc(p1,p2,p3) solL(parameters=[a1=p1,b1=p2,c1=p3]); end proc:
FitParams:=Statistics:-NonlinearFit(ans, x11, y11, z11, x1, y1, z1);

 

Error, (in Statistics:-NonlinearFit) unexpected parameters: Vector(27, {(1) = 1549.88755331800, (2) = -329.861725802688, (3) = 8.54200301129155, (4) = -283.381775745327, (5) = -54.5469129127573, (6) = 1875.94875597129, (7) = -16.2230517860850, (8) = 6084.82381954832, (9) = 1146.15489803104, (10) = -456.460512914647, (11) = 104.533252701641, (12) = 16.3998365630734, (13) = 11.5710907832054, (14) = -175.370276462696, (15) = 33.8045539958636, (16) = 2029.50029336951, (17) = 1387.92643570857, (18) = 9.54717543291120, (19) = -1999.09590358328, (20) = 29.7628085078953, (21) = 2582103.332, (22) = 57.7969622731082, (23) = -6.42551196941394, (24) = -...

First 232 233 234 235 236 237 238 Last Page 234 of 2230