Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Good day everyone,

Please, I need help on how to optimize the function above. I actually wanted to plot the function with respect to "eta", but, I need the optimum value(s) for "alpha". Anyone with useful information should please help.

Thanking you in anticipation for your help.                                                             f=((-0.111000111e-1*alpha^4+.109890109900000*alpha^3+0.110726700000000e-1*alpha^2+0.133899904900000e-3*alpha+0.136700000000000e-4)*exp(-alpha*eta)+(-0.683733733e-5+0.683733733e-5*alpha^2-0.676896396e-4*alpha)*exp(-2*alpha*eta)+0.111000111e-1*alpha^4-.109890109900000*alpha^3-0.110794990900000e-1*alpha^2-0.663221721200000e-4*alpha-0.683733733200000e-5)/(.1*alpha^5-.99*alpha^4-.1*alpha^3)

how to plot multivalued function in the region from  -a to a solving 2nd order ode in maple ?

d^x/du^2+1/2sech^2(u)*x(u)=0  . I have to find out the analytical value in three different regions like u<=-a , -a<=u<=a , u>=a . How to find out ? 

with(geometry):
_EnvHorizontalName := x:
_EnvVerticalName := y:
a := 7:
b := a*(1/2 + 1/6*sqrt(45 - 24*sqrt(3)))^2:
r := b*sqrt(b)/(sqrt(a + b) + sqrt(a)):
point(A, -a, b): point(B, -a, -b):
point(C, a, -c): point(F, a, b):
Sq := square(Sq, [A, B, C, F]):
circle(C1, [point(P1, [r, 0]), r]):
circle(C2, [point(P2, [(1 + sqrt(3))*r, r]), r]):
circle(C3, [point(P3, [(1 + sqrt(3))*r, -r]), r]):
ellipse(E, x^2/a^2 + y^2/b^2 = 1, [x, y]):
solve({Equation(C1), x^2/a^2 + y^2/b^2 = 1}, {x, y}):
point(T, [5.349255162, 2.829908743]):
IsOnCircle(T, C1);
draw([E(color = cyan), C1(color = yellow, filled = true), T(symbol = solidcircle, symbolsize = 20, color = red), Sq, C2(color = red), C3(color = red),Sq(color=blue)], axes = normal, view = [-a .. a, -b .. b], scaling = constrained);
square: (196+(7*(1/2+(1/6)*(45-24*3^(1/2))^(1/2))^2+c)^2)^(1/2)-(196+196*(1/2+(1/6)*(45-24*3^(1/2))^(1/2))^4)^(1/2) = 0
square: (7/2)*(1/2+(1/6)*(45-24*3^(1/2))^(1/2))^2-(1/2)*c = 0
Error, (in geometry:-square) not enough information to define a square
                             false

Error, (in geometry:-draw) cannot determine the vertices for drawing .Why all these errors ? Thank you.

Dear all

i am a very new user of Maple. 
is there an equivalent Mathematica function of

Transpose@Partition[BinaryReadList["Namefile","UnsignedInteger16"],8]

thank you very much and best regards

bruno

I'm seeking a way to test conditional statements for truth in Maple (2022).

The statements are like (\phi^2 > 2) implies (\phi > 1.4)

1) how can I input such kind of statements?

2) how can I get a result in form true/false

  a) for entire expression

  b) (depending on phi range)

Does anyone use the /= assignment operator?

I am trying to do a

while error  > error_tol do

sequence of ops,

# update error from last loop
# simple example of assignment test 

error /= 2;    #to simulate decreasing error each loop.  Real equation on RHS is error(i) = error(i-1) + comparison of last iterates.

# Real operator assignment I'd like to use is error += comparison

end do;

the divide / keeps applying as the single divide and a long line under the variable before I can type =.   This happens in both 1-D and 2-D.   The "Operator Assignments" help page doesn't have a lot of help on syntax problems using these. 

Thanks,
Bill

I am trying to find a fast method for integration of a function composed of several Heavisides. I used Quadrature-Romberg, but no success. What is the problem with it and what method do you recommend instead?

``

restart

``

A := Heaviside(zeta__2-.6429162216568)*Heaviside(eta__2+.5050000000000-10.98537767108*sqrt(492.5151416233-zeta__2^2))+Heaviside(zeta__2-.9999999999936)*Heaviside(eta__2+.9875792458758+3.881485663812*10^9*sqrt(9.765625000000*10^22-zeta__2^2))+Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2-.4637698986762+2.327456686822*10^11*sqrt(2.777777777778*10^24-zeta__2^2))-Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2-.4637698986762-2.327456686822*10^11*sqrt(2.777777777778*10^24-zeta__2^2))+Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.1619291800251+3.018371923484*10^11*sqrt(4.000000000000*10^24-zeta__2^2))-Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.1619291800251-3.018371923484*10^11*sqrt(4.000000000000*10^24-zeta__2^2))+Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.7243706106403+1.382194833711*10^11*sqrt(1.562500000000*10^24-zeta__2^2))-Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.7243706106403-1.382194833711*10^11*sqrt(1.562500000000*10^24-zeta__2^2))+Heaviside(zeta__2-1.000000000000)*Heaviside(eta__2+.9875792458758-3.881485663812*10^9*sqrt(9.765625000000*10^22-zeta__2^2))-Heaviside(zeta__2-1.000000000000)*Heaviside(eta__2+.9875792458758+3.881485663812*10^9*sqrt(9.765625000000*10^22-zeta__2^2))+Heaviside(zeta__2-1.000000000000)*Heaviside(eta__2-.8341191288491-1.298592148442*10^10*sqrt(9.706617486471*10^21-zeta__2^2))-Heaviside(zeta__2-1.000000000000)*Heaviside(eta__2-.8341191288491+1.298592148442*10^10*sqrt(9.706617486471*10^21-zeta__2^2))-Heaviside(zeta__2-.9999999999796)*Heaviside(eta__2-.8341191288491-1.298592148442*10^10*sqrt(9.706617486471*10^21-zeta__2^2))-Heaviside(zeta__2-.5527964251744)*Heaviside(eta__2+.5050000000000-10.98537767108*sqrt(492.5151416233-zeta__2^2))+Heaviside(zeta__2-.5527964251744)*Heaviside(eta__2+.5050000000000+10.98537767108*sqrt(492.5151416233-zeta__2^2))+Heaviside(zeta__2-.7684252323012)*Heaviside(eta__2-.5050000000000-8.127372424924*sqrt(269.5813999936-zeta__2^2))-Heaviside(zeta__2-.6466146460206)*Heaviside(eta__2-.5050000000000-8.127372424924*sqrt(269.5813999936-zeta__2^2))-Heaviside(zeta__2-.7684252323012)*Heaviside(eta__2-.5050000000000+8.127372424924*sqrt(269.5813999936-zeta__2^2))+Heaviside(zeta__2-.6466146460206)*Heaviside(eta__2-.5050000000000+8.127372424924*sqrt(269.5813999936-zeta__2^2))-Heaviside(zeta__2-.9999999999936)*Heaviside(eta__2+.9875792458758-3.881485663812*10^9*sqrt(9.765625000000*10^22-zeta__2^2))+Heaviside(zeta__2-.9999999999796)*Heaviside(eta__2-.8341191288491+1.298592148442*10^10*sqrt(9.706617486471*10^21-zeta__2^2))+Heaviside(zeta__2+.9999999999972)*Heaviside(eta__2+.9842650870048-1.085166413462*10^10*sqrt(4.756242568371*10^23-zeta__2^2))-Heaviside(zeta__2+.9999999999972)*Heaviside(eta__2+.9842650870048+1.085166413462*10^10*sqrt(4.756242568371*10^23-zeta__2^2))+Heaviside(zeta__2+.9999999999990)*Heaviside(eta__2+.1619291800251-3.018371923484*10^11*sqrt(4.000000000000*10^24-zeta__2^2))-Heaviside(zeta__2+.9999999999990)*Heaviside(eta__2+.1619291800251+3.018371923484*10^11*sqrt(4.000000000000*10^24-zeta__2^2))+Heaviside(zeta__2+.9999999999988)*Heaviside(eta__2-.4637698986762-2.327456686822*10^11*sqrt(2.777777777778*10^24-zeta__2^2))-Heaviside(zeta__2+.9999999999988)*Heaviside(eta__2-.4637698986762+2.327456686822*10^11*sqrt(2.777777777778*10^24-zeta__2^2))+Heaviside(zeta__2+.9999999999984)*Heaviside(eta__2+.7243706106403-1.382194833711*10^11*sqrt(1.562500000000*10^24-zeta__2^2))-Heaviside(zeta__2+.9999999999984)*Heaviside(eta__2+.7243706106403+1.382194833711*10^11*sqrt(1.562500000000*10^24-zeta__2^2))+Heaviside(zeta__2+.9999999999984)*Heaviside(eta__2-.9031048925918-8.123652892875*10^10*sqrt(1.562500000000*10^24-zeta__2^2))-Heaviside(zeta__2+.9999999999984)*Heaviside(eta__2-.9031048925918+8.123652892875*10^10*sqrt(1.562500000000*10^24-zeta__2^2))-Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.9842650870048-1.085166413462*10^10*sqrt(4.756242568371*10^23-zeta__2^2))+Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2+.9842650870048+1.085166413462*10^10*sqrt(4.756242568371*10^23-zeta__2^2))-Heaviside(zeta__2-.6429162216568)*Heaviside(eta__2+.5050000000000+10.98537767108*sqrt(492.5151416233-zeta__2^2))-Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2-.9031048925918-8.123652892875*10^10*sqrt(1.562500000000*10^24-zeta__2^2))+Heaviside(zeta__2+1.000000000000)*Heaviside(eta__2-.9031048925918+8.123652892875*10^10*sqrt(1.562500000000*10^24-zeta__2^2)):

plot3d(A, zeta__2 = -1 .. 1, eta__2 = -1 .. 1, color = green)

 

Digits := 22:

with(Student[NumericalAnalysis]):

Quadrature(Quadrature(A, zeta__2 = -1 .. 1, method = romberg[8]), eta__4 = -1 .. 1, method = romberg[8])

Float(undefined)*Heaviside(eta__2+1212964270000000000001.)+Float(undefined)*Heaviside(eta__2-1279401131003415700657.)-0.1513022270849353690226e-1*Heaviside(eta__2-133.8411610374164929382)+Float(undefined)*Heaviside(eta__2-7483906296259851792359.)+Float(undefined)*Heaviside(eta__2+7483906296259851792361.)+Float(undefined)*Heaviside(eta__2-0.1015456611625000000000e24)+Float(undefined)*Heaviside(eta__2+0.1015456611625000000000e24)+Float(undefined)*Heaviside(eta__2+0.3879094478488497112464e24)+Float(undefined)*Heaviside(eta__2+1279401131003415700655.)-0.4538512794872905686682e-1*Heaviside(eta__2-133.8360207224718595497)+0.4538512794872905686682e-1*Heaviside(eta__2+132.8260207224718595497)+0.4538512794872905686682e-1*Heaviside(eta__2+132.8042477794001150390)-0.4538512794872905686682e-1*Heaviside(eta__2-133.8253766167816064928)-0.4538512794872905686682e-1*Heaviside(eta__2-243.1883998382669648802)+0.1513022270849353690226e-1*Heaviside(eta__2+132.8311610374164929382)+Float(undefined)*Heaviside(eta__2-0.1727743542500000000000e24)-0.1513022270849353690226e-1*Heaviside(eta__2-243.2027260661341424950)+0.1513022270849353690226e-1*Heaviside(eta__2+244.2127260661341424950)+0.4538512794872905686682e-1*Heaviside(eta__2+244.1983998382669648802)-0.4538512794872905686682e-1*Heaviside(eta__2-243.1980716456433769010)+0.4538512794872905686682e-1*Heaviside(eta__2+244.2080716456433769010)+0.4538512794872905686682e-1*Heaviside(eta__2+132.8153766167816064928)+0.1513022270849353690226e-1*Heaviside(eta__2+132.8098727970154075001)+Float(undefined)*Heaviside(eta__2-0.3879094478488497112464e24)-0.4538512794872905686682e-1*Heaviside(eta__2-243.2072595071292620415)+Float(undefined)*Heaviside(eta__2+0.6036743846000000000000e24)+Float(undefined)*Heaviside(eta__2-0.6036743846000000000000e24)+Float(undefined)*Heaviside(eta__2+0.1727743542500000000000e24)-0.1916322521366165064753e-1*Heaviside(eta__2-133.8307592537082147847)+0.1916322521366165064753e-1*Heaviside(eta__2+132.8207592537082147847)-0.1916322521366165064753e-1*Heaviside(eta__2-243.2116719753798543789)+0.1916322521366165064753e-1*Heaviside(eta__2+244.2216719753798543789)-0.4538512794872905686682e-1*Heaviside(eta__2-133.8026340889186250133)+0.4538512794872905686682e-1*Heaviside(eta__2+132.7926340889186250133)-0.4538512794872905686682e-1*Heaviside(eta__2-133.8142477794001150390)-0.1513022270849353690226e-1*Heaviside(eta__2-133.8198727970154075001)+0.4538512794872905686682e-1*Heaviside(eta__2+244.2172595071292620415)-0.1903631769101229216919e-1*Heaviside(eta__2-133.8085015485931455736)+0.1903631769101229216919e-1*Heaviside(eta__2+132.7985015485931455736)+0.1903531841918040745676e-1*Heaviside(eta__2+244.2032962387251632874)-0.1903531841918040745676e-1*Heaviside(eta__2-243.1932962387251632874)+Float(undefined)*Heaviside(eta__2-1212964269999999999999.)

(1)

int(int(A, zeta__2 = -1 .. 1), eta__2 = -1 .. 1)

.4238607655960000000000

(2)

``

Download romberg.mw

I am trying to solce eq (2) by integration. But maple integrate only 1st term in eq. Why not other two terms? 

 

Solve_integral.mw

and I try to fix my file use this method: https://www.mapleprimes.com/questions/129377-There-Were-Problems-During-The-Loading?reply=reply , but an error occurred as follows .

And my code is:

restart;

DeleteBadCharacters := proc(file :: string)
local base, badchar, char, cnt, msg, outfile, str, unicode;
    str := FileTools:-Text:-ReadFile(file);
    for cnt from 0 do
        try
            XMLTools:-ParseString(str);
            break;
        catch "An invalid XML character":
            msg := lastexception[2];
            if not StringTools:-RegMatch("Unicode: 0x([^)]+)", msg, 'all', 'unicode') then
                error;
            end if;
            unicode := sscanf(unicode,"%x");
            char := convert(unicode,'bytes');
            badchar[cnt+1] := char;
            str := StringTools:-SubstituteAll(str, char, "");
        end try;
    end do;

    if cnt=0 then
        printf("no errors in file\n");
    else
        if not StringTools:-RegMatch("^(.*)\\.mw$", file, 'all', 'base') then
            error "problem extracting basename";
        end if;
        printf("deleted bad characters: %A\n", {seq(badchar[cnt],cnt=1..cnt)});
        outfile := sprintf("%s-fixed.mw", base);
        FileTools:-Text:-WriteString(outfile, str);
        fclose(outfile);
        printf("wrote updated file to %s\n", outfile);
    end if;
    return NULL;
end proc:
NULL;
NULL;
DeleteBadCharacters( "E:/EchoModel_V3.mw" );

And the error is

"Error, (in XMLTools:-ParseString) XML document structures must start and end within the same entity."

I use maple 2021.  Thank you very much!

I can not find my Kamke book right now. But according to Maple help, Homogeneous ODE of Class C is the following

If I understand the above, it is saying that the RHS of the ode should be ratio of two polynomials, and both should be linear in y and x. Correct?

Given the above, then why Maple says the following ode is _homogeneous, `class C` ? Since the RHS is not linear in y and not linear in x:

restart;
ode:=diff(y(x),x)=(2*y(x)-1)*(4*y(x)+6*x-3)/(y(x)+3*x-1)^2;
ode:=lhs(ode)=expand(numer(rhs(ode)))/expand(denom(rhs(ode)))

DEtools:-odeadvisor(ode)

           [[_homogeneous, `class C`], _rational]

What Am I overlooking/misunderstanding  from reading this definition? 

The system does not correctly calculate the CDF of a Binomial using the Regularized Incomplete Beta for p=0.5.

 

Ícono de validado por la comunidad

restart;
n := 10;
f := x -> int(t^(n - x - 1)*(1 - t)^x, t = 0 .. 1 - p)/Beta(n - x, x + 1);
p := 0.5;
plot(f(x), x = 0 .. 10);

gaussian.m.mw

This is the maple worksheet

 

It's showing an error. It's showing an error with its conditions. What to do? How can I solve it? Got stuck here on this issue?Unable to solve this problem. Please help me. This the maple worksheet:

6coupled.m.mw

 

EqBIS := proc(P, U, V)
local a, eq1, M1, t, PU, PV, bissec1;
a := (P - U)/LinearAlgebra:-Norm(P - U, 2) + (P - V)/LinearAlgebra:-Norm(P - V, 2);
M1 := P + a*t;
eq1 := op(eliminate({x = M1[1], y = M1[2]}, t));
RETURN(op(eq1[2])); end proc;
EqBIS*([4, 5], [11, 7/3], [11, 5]);
why such a procedure gives no result Thabk you.

 

Trying to use the jets package from http://jets.math.slu.cz/ (file jets.s) for calculus of variations.

Test example -

coordinates([x,y],[f],3);
parameter(p);
g:=(f_x)^2+(f_y)^2-2*p*f;
vg:=variation(g,f);                  # first variation of g (from line 4354 of jets.s)

Now I want to find g from vg - inverse problem. The code for this starts on line 4367 of jets.s, command is lagrangian.

Tried -

Lg:=lagrangian(vg,f);
Lg:=lagrangian([vg,f]);
Lg:=lagrangian(vg,[f]);
Lg:=lagrangian(f=vg);

but all give syntax errors.

The authors of the package don't respond to query and the manual does't help.

Does anyone know what the correct syntax of lagrangian is. Or is there a better package to use for inverse problem.

Thank you.

First 299 300 301 302 303 304 305 Last Page 301 of 2230