Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Maple is very good in solving PDE's. But this specific solution seems way too complicated when compared to Matematica solution, which I verified using Maple pdetest to be correct.

Is there a way to make Maple produce the simpler solution to this pde? simplify does nothing on the solution. May be by using a good HINT or such other option? 
 

restart;

pde:=(a*y+b*x+c)*diff(w(x,y),x)-(b*y+k*x+s)*diff(w(x,y),y)=0;

(a*y+b*x+c)*(diff(w(x, y), x))-(b*y+k*x+s)*(diff(w(x, y), y)) = 0

sol:=pdsolve(pde,w(x,y))

w(x, y) = _F1(1/(a^3*k^2*y^2-2*a^2*b^2*k*y^2+2*a^2*b*k^2*x*y+a^2*k^3*x^2+a*b^4*y^2-4*a*b^3*k*x*y-2*a*b^2*k^2*x^2+2*b^5*x*y+b^4*k*x^2+2*a^2*c*k^2*y+2*a^2*k^2*s*x-4*a*b^2*c*k*y-4*a*b^2*k*s*x+2*b^4*c*y+2*b^4*s*x+a^2*k*s^2-a*b^2*s^2-2*a*b*c*k*s+a*c^2*k^2+2*b^3*c*s-b^2*c^2*k)^(1/2))

mma_solution := w(x,y)= _F1( (2*s*x+k*x^2+2*c*y+2*b*x*y+a*y^2)/a );

w(x, y) = _F1((a*y^2+2*b*x*y+k*x^2+2*c*y+2*s*x)/a)

pdetest(mma_solution,pde)

0

 


Here is screen shot showing the other solution

Download q1.mw

 

 


hello!

I'm new in Maple!!

I am try simulate the termal flux in composite material using heat equation and perfect contact between the materials. But I can't enter the fourier condiction and my code don't work!!

Any help??

 

> restart; with(plots); with(PDEtools); with(plottool
> eq1 := diff(u1(x, t), x, x) = k1*(diff(u1(x, t), t));
                    d  / d          \      / d          \
                   --- |--- u1(x, t)| = k1 |--- u1(x, t)|
                    dx \ dx         /      \ dt         /
> eq2 := diff(u2(x, t), x, x) = k1*(diff(u2(x, t), t));
                    d  / d          \      / d          \
                   --- |--- u2(x, t)| = k1 |--- u2(x, t)|
                    dx \ dx         /      \ dt         /
> L := 10; v1 := 20; v2 := 10; k1 = 10; k2 := 20;
                                     10
                                     20
                                     10
                                   k1 = 10
                                     20
> bc1 := u1(0, t) = v1, u1(x, 0) = 0;
                         u1(0, t) = 20, u1(x, 0) = 0
> bc2 := u2(0, t) = v2, u2(x, 0) = 0;
                         u2(0, t) = 10, u2(x, 0) = 0
> sol1 := pdsolve({bc1, eq1});
Warning: System is inconsistent

 

 

 

Hello,
I would like to display a complete trigonometric circle.like the attached photo. How to do it? Thanks 

TrigonometricCircle.mw

 

It is necessary that the expressions are combined in a new function. So as I'm trying not is obtained.
 

restart; x := 5; y := 10; f := proc (x, y) options operator, arrow; x+y end proc; f2 := proc (x, y) options operator, arrow; x^2+y^3 end proc; f3 := proc (x, y) options operator, arrow; f+f2 end proc; f3(x, y)

5

 

10

 

proc (x, y) options operator, arrow; x+y end proc

 

proc (x, y) options operator, arrow; x^2+y^3 end proc

 

proc (x, y) options operator, arrow; f+f2 end proc

 

f+f2

(1)

``


 

Download testmaple.mw

Dear Users!

Hope you would be fine. I want to export dat file for 3D plot in maple and want to replot it any perfessional software like tecplot, origin.

u:=sin(x+y):
plot3d(sin(x+y), x = 0 .. 2*Pi, y = 0 .. 2*Pi);
How can I export the data in 3D. Thanks in advance for you help.

Apostrophe '  is always interpreted as a "differentiate command", i.e., A' is always translated  to diff(A(x),x).

Is it possible to override this behaviour, it is to say, is there a way for using A' as a variable name?

In euclidean geometry of triangles, A' is a common name given to some points built from vertex A of a triangle ABC.

Thanks in advance,

César Lozada

 

 

 

 

 

 

 

 

 

Please check this code and fix the error. And help me with the below two questions.

1- In the above image, I'm getting the error when I'm to plot my solutions.

2- How to get information from this system?

      The values of x_1 and corresponding y_1 and so on and errors etc

This is a downloadable link to my worksheet [Practice.mw]

Thanks!

How do I get Maple to factorize this simple expression without too much effort?

f:=3/2 + sqrt(8*k + 2) + 2*k

I want to create a distribution table and then find expected value,variance and standard deviation.

For example : X=-1,P(X)=0.2
                       X=0,P(X)=0.25
                       X=1,P(X)=0.35

                       X=2,P(X)=0.2

E(X) would then equal -1*0.2+0*0.25+1*0.35+2*0.2.

How can I do all of this with Maple ? 

How should linearization a nonlinear equation with maple?

I'm trying to use the ExpectedValue function to get the next close value of a stock.

restart; with(Finance)

W := WienerProcess()

T := 1.0

S := SamplePath(W(t), t = 0 .. T, timesteps = 100, replications = 10^4)

A := S[1 .. 10^4, 50]

TI := 1

AN := 100 (Start Value)

sigma := 3.5 (volatility)

r := 0.5e-1    (interest)

ANF := AN*exp((r-(1/2)*sigma^2)*TI+sigma*W(TI))       (ANF: is the forecasting Value)

ExpectedValue(ANF, timesteps = 100, replications = 10^3)

Is this approach right?

Why it be like that and how to solve it ?


>restart;
> ODEtools[declare]((S, L, B)(t), prime = t);
         ODEtools[declare](S(t), L(t), B(t), prime = t)
> DE1 := diff(S(t), t) = -L*S*beta-`μS`+mu;
                    d                               
            DE1 := --- S(t) = -L S beta - μS + mu
                    dt                              
> DE2 := diff(L(t), t) = L*S*beta-(gamma+mu)*S;
                  d                                  
          DE2 := --- L(t) = beta S L - (gamma + mu) S
                  dt                                 
> DE3 := diff(B(t), t) = L*gamma-gamma*mu;
                      d                           
              DE3 := --- B(t) = L gamma - gamma mu
                      dt                          
> init_conds := S(0) >= 0, L(0) >= 0, B(0) >= 0;
         init_conds := 0 <= S(0), 0 <= L(0), 0 <= B(0)
> sys := {init_conds, diff(B(t), t) = L*gamma-gamma*mu, diff(L(t), t) = L*S*beta-(gamma+mu)*S, diff(S(t), t) = -L*S*beta-`&mu;S`+mu};

> sol := dsolve(sys, numeric, parameters = [mu, beta, gamma, S(t), L(t), B(t)], method = rkf45);

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations


> sol(parameters = [mu = .234, beta = 2.345, gamma = 5.678, S(t) = 6.678, L(t) = 6.789, B(t) = 7.123]);
           sol(parameters = [mu = 0.234, beta = 2.345, gamma = 5.678, S(t) = 6.678, L(t) = 6.789, B(t) = 7.123])

Is the following a bug? I am using Maple 2019  64 bit with latest Physics package 357 on windows 10.


 

restart;

pde :=  diff(w(x,y,z),x)+(y^2- a*exp(alpha*x)*(x*y-1))*diff(w(x,y,z),y)+(c*exp(beta*x)*z^2+b*exp(-beta*x))*diff(w(x,y,z),z)= 0;
sol:=pdsolve(pde,w(x,y,z));

diff(w(x, y, z), x)+(y^2-a*exp(alpha*x)*(x*y-1))*(diff(w(x, y, z), y))+(c*exp(beta*x)*z^2+b*exp(-beta*x))*(diff(w(x, y, z), z)) = 0

Error, (in depends) too many levels of recursion

restart;

pde :=  diff(w(x,y,z),x)+ (b*exp(alpha*x)*y^2 + a*exp(beta*x)*(beta- a*b*exp((alpha+beta)*x)))*diff(w(x,y,z),y)+(c*z^2*exp(gamma*x)+ d*z + k*exp(-gamma*x))*diff(w(x,y,z),z)= 0;
sol:=pdsolve(pde,w(x,y,z));

diff(w(x, y, z), x)+(b*exp(alpha*x)*y^2+a*exp(beta*x)*(beta-a*b*exp((alpha+beta)*x)))*(diff(w(x, y, z), y))+(c*z^2*exp(gamma*x)+d*z+k*exp(-gamma*x))*(diff(w(x, y, z), z)) = 0

Error, (in depends) too many levels of recursion

restart;

pde :=  x*diff(w(x,y,z),x)+ ( a1*exp(alpha*x)*y^2 + beta*y+ a1*b2^2*x^(2*beta)*exp(alpha*x))*diff(w(x,y,z),y)+(a2*x^(2*n)*z^2*exp(lamba*x)+(b2*x^n*exp(lambda*x) - n)*z + c*exp(lambda*x))*diff(w(x,y,z),z)= 0;
sol:=pdsolve(pde,w(x,y,z));

x*(diff(w(x, y, z), x))+(a1*exp(alpha*x)*y^2+beta*y+a1*b2^2*x^(2*beta)*exp(alpha*x))*(diff(w(x, y, z), y))+(a2*x^(2*n)*z^2*exp(lamba*x)+(b2*x^n*exp(lambda*x)-n)*z+c*exp(lambda*x))*(diff(w(x, y, z), z)) = 0

Error, (in depends) too many levels of recursion

 


 

Download bug2.mw

I want to find following NxN matrix P                                           (N=2^k.M where k and M are a positive integers)  

My Code Try: question.mw

restart:
with(LinearAlgebra):
interface(rtablesize=20):
k:=2:
M:=4:
N:=2^k*M: 
for i from 1 to M do
S:= (sqrt(2)/2^k)*Matrix(M,M, (i,j)-> `if`(`and`(i::odd,j=1) ,-1/(i*(i-2)),0)):   
end do:
C:= (1/2^k)*BandMatrix( [ [ seq(-1/(2*sqrt(2)*(i-1)*(i-3)), i=4..M)], [ 1, seq(0*i,i=1..M-1) ],[ seq(4/2*(i-3),i=2..M)]
                ]
              ); #I think the matrix C is not same in the question
     
Gen:=proc(K::posint,A,B)
  Matrix(scan=triangular[upper],[seq([A,seq(B,i=j..2^(K)-1)],j=1..2^(K))]);
end proc: 
P:=Gen(k,C,S);

question.mw

First 691 692 693 694 695 696 697 Last Page 693 of 2231