Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I am using matrices to input data in order to plot it on a surface plot. Is it then possible to export an animation of this graph rotating around an axis?

My matrix is 40 x 3 Matrix

 

Thanks :)

Here is a problem from SEEMOUS 2017 (South Eastern European Mathematical Olympiad for University Students)
which Maple can solve (with a little help).

For k a fixed nonnegative integer, compute:

Sum( binomial(i,k) * ( exp(1) - Sum(1/j!, j=0..i) ), i=k..infinity );

(It is the last one, theoretically the most difficult.)

Hello friends!

I have one question, whenever I solved system of ODEs using numerical solution (bilton command i.e., dsolve(dsys1, numeric, output = listprocedure, range = 0 .. 1)), its accutacy always like 10 or 12 digits not above at all. I want to how i improve the accuracy. I am waiting your postive answer.

HI MaplePrimes,

Is the Goldbach Weak Conjecture proven?

Consider odd primes p, q, and r.  The question is, Is the sum p+q+r sufficient to reach all odd numbers greater than 9?

See - 

https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture

I tried an example.

looping_for_Goldbach_Weak_Conjecture_8.mw

looping_for_Goldbach_Weak_Conjecture_8.pdf

Regards,

Matt

 

restart;

Digits := 18;
with(LinearAlgebra);
f := proc (n) 3*sin(x[n]) end proc;

g := proc (n) 3*cos(x[n])

end proc;

#problem call.
for n from 0 to 0 do

e1 := expand(-y[n+3/2]+y[n]-3*y[n+1/2]+3*y[n+1]+1/11612160*(5856*h^4*g(n+1/2)-19968*h^4*g(n+3/2)+2343*h^4*g(n)-76356*h^4*g(n+1)-7058*h^4*g(n+2)+608864*h^3*f(n+1/2)+104864*h^3*f(n+3/2)+28489*h^3*f(n)+702864*h^3*f(n+1)+6439*h^3*f(n+2)));

e2 := expand(-y[n+2]+3*y[n]-8*y[n+1/2]+6*y[n+1]+1/5806080*(18768*h^4*g(n+1/2)-32880*h^4*g(n+3/2)+3867*h^4*g(n)-76356*h^4*g(n+1)-2229*h^4*g(n+2)+965728*h^3*f(n+1/2)+461728*h^3*f(n+3/2)+45953*h^3*f(n)+1405728*h^3*f(n+1)+23903*h^3*f(n+2)));

e3 := expand(-z[n]+(1/383201280*(-4207440*h^4*g(n+1/2)-930192*h^4*g(n+3/2)+371973*h^4*g(n)-3631932*h^4*g(n+1)-41259*h^4*g(n+2)+16136096*h^3*f(n+1/2)+3866720*h^3*f(n+3/2)+5752543*h^3*f(n)+5810400*h^3*f(n+1)+367681*h^3*f(n+2))+4*y[n+1/2]-3*y[n]+y[n+1])/h);

e4 := expand(-z[n+1/2]+(1/191600640*(376320*h^4*g(n+1/2)+118896*h^4*g(n+3/2)-29469*h^4*g(n)+532764*h^4*g(n+1)+5079*h^4*g(n+2)-5812112*h^3*f(n+1/2)-508016*h^3*f(n+3/2)-381553*h^3*f(n)-1236168*h^3*f(n+1)-45511*h^3*f(n+2))-y[n]+y[n+1])/h);

e5 := expand(-z[n+1]+(1/383201280*(-31920*h^4*g(n+1/2)-433776*h^4*g(n+3/2)+71547*h^4*g(n)-2519748*h^4*g(n+1)-17493*h^4*g(n+2)+18565216*h^3*f(n+1/2)+1933216*h^3*f(n+3/2)+885665*h^3*f(n)+10391328*h^3*f(n+1)+158015*h^3*f(n+2))-5*y[n+1/2]+y[n]+3*y[n+1])/h);

e6 := expand(-z[n+3/2]+(1/95800320*(250224*h^4*g(n+1/2)-730680*h^4*g(n+3/2)+61266*h^4*g(n)-1526256*h^4*g(n+1)-22044*h^4*g(n+2)+15680504*h^3*f(n+1/2)+4712456*h^3*f(n+3/2)+735469*h^3*f(n)+22576428*h^3*f(n+1)+203623*h^3*f(n+2))-8*y[n+1/2]+3*y[n]+5*y[n+1])/h);

e7 := expand(-z[n+2]+(1/383201280*(3873264*h^4*g(n+1/2)+332976*h^4*g(n+3/2)+497649*h^4*g(n)-1407564*h^4*g(n+1)-720255*h^4*g(n+2)+114710816*h^3*f(n+1/2)+93716192*h^3*f(n+3/2)+5705827*h^3*f(n)+191366496*h^3*f(n+1)+9635389*h^3*f(n+2))-12*y[n+1/2]+5*y[n]+7*y[n+1])/h);

e8 := expand(-p[n]+(1/191600640*(13423440*h^4*g(n+1/2)+3068304*h^4*g(n+3/2)-1621317*h^4*g(n)+11615292*h^4*g(n+1)+137451*h^4*g(n+2)-32503712*h^3*f(n+1/2)-12664928*h^3*f(n+3/2)-32539039*h^3*f(n)-16869600*h^3*f(n+1)-1223041*h^3*f(n+2))-8*y[n+1/2]+4*y[n]+4*y[n+1])/h^2);

e9 := expand(-p[n+1/2]+(1/191600640*(-3053856*h^4*g(n+1/2)-213216*h^4*g(n+3/2)+98049*h^4*g(n)-509436*h^4*g(n+1)-10191*h^4*g(n+2)-1045120*h^3*f(n+1/2)+831104*h^3*f(n+3/2)+1331083*h^3*f(n)-1207008*h^3*f(n+1)+89941*h^3*f(n+2))-8*y[n+1/2]+4*y[n]+4*y[n+1])/h^2);

e10 := expand(-p[n+1]+(1/63866880*(194160*h^4*g(n+1/2)-373968*h^4*g(n+3/2)+52329*h^4*g(n)-2514924*h^4*g(n+1)-14727*h^4*g(n+2)+14006304*h^3*f(n+1/2)+1695712*h^3*f(n+3/2)+634955*h^3*f(n)+15463008*h^3*f(n+1)+133461*h^3*f(n+2))-8*y[n+1/2]+4*y[n]+4*y[n+1])/h^2);

e11 := expand(-p[n+3/2]+(1/191600640*(1491168*h^4*g(n+1/2)-4758240*h^4*g(n+3/2)+190977*h^4*g(n)-509436*h^4*g(n+1)-103119*h^4*g(n+2)+46274944*h^3*f(n+1/2)+48151168*h^3*f(n+3/2)+2215307*h^3*f(n)+93985056*h^3*f(n+1)+974165*h^3*f(n+2))-8*y[n+1/2]+4*y[n]+4*y[n+1])/h^2);

e12 := expand(-p[n+2]+(1/191600640*(4772688*h^4*g(n+1/2)+11719056*h^4*g(n+3/2)+338619*h^4*g(n)+11615292*h^4*g(n+1)-1822485*h^4*g(n+2)+59770976*h^3*f(n+1/2)+79609760*h^3*f(n+3/2)+3528289*h^3*f(n)+109647648*h^3*f(n+1)+34844287*h^3*f(n+2))-8*y[n+1/2]+4*y[n]+4*y[n+1])/h^2) end do;
M := {e || (1 .. 12)};

y_init := 1;

z_init := 0;

p_init := -2;

x_init := 0; A := 0; B := 1; N := 40;

h := evalf((B-A)/N); count := 1;

X := y[k], y[k+1/2], y[k+1], y[k+3/2], z[k], z[k+1/2], z[k+1], z[k+3/2], p[k], p[k+1/2], p[k+1], p[k+3/2];

step := seq(eval(x, x = n*h), n = 1 .. N);

y_exact := ([seq])(eval(3*cos(x)+(1/2)*x^2-2, x = n*h), n = 1 .. N);

z_exact := ([seq])(eval((1/3*(3*x^2+6*x+3))/(x^3+3*x^2+3*x+1), x = n*h), n = 1 .. N);

p_exact := ([seq])(eval((1/3*(6*x+6))/(x^3+3*x^2+3*x+1)-(1/3)*(3*x^2+6*x+3)^2/(x^3+3*x^2+3*x+1)^2, x = n*h), n = 1 .. N);
vars := seq(X, k = 1);
printf("\n%4s%13s%15s%15s\n", "@", "y_Num", "y_Exact", "y_Error");

for q to N do

for ix to 4 do

x[ix] := h*ix+x_init end do;

result := eval(`<,>`(vars), fsolve(eval(M, [x[0] = x_init, x[1/2] = x_init, x[3/2] = x_init, y[0] = y_init, y[1/2] = y_init, y[3/2] = y_init, z[0] = z_init, z[1/2] = z_init, z[3/2] = z_init, p[0] = p_init, p[1/2] = p_init, p[3/2] = p_init]), {vars}));

for k to 4 do

printf("%5.2f %14.15f", step[count], result[k]);

printf("%20.15f %10.18G \n", y_exact[count], abs(result[k]-y_exact[count]));

count := count+1;

P := [result[k]]

end do;

x_init := x[ix-1];

y_init := result[4];

z_init := result[8];

p_init := result[12]

end do;

 

please that is the code i write to solve the problem after using the matrix form to generate the value but is given me error of the form


   @        y_Num        y_Exact        y_Error
Error, invalid input: eval received fsolve({-6398.00004614630940+6400.00000000000000*y[1], -6397.99992849910140+6400.00000000000000*y[1], -6397.99909739580050+6400.00000000000000*y[1], -199.999989717789185+200.000000000000000*y[1], -40.0000000791700798+40.0000000000000000*y[1], -2.99999993737911015+3*y[1], 39.999999768462113+40.0000000000000000*y[1], -p[1]-6399.99961623646730+6400.00000000000000*y[1], -p[2]-6399.99798489466010+6400.00000000000000*y[1], -y[2]-4.99999972458202552+6*y[1], -z[1]-159.999999048856193+120.000000000000000*y[1], -z[2]-279.999973921987948+280.000000000000000*y[1]}, {p[1], p[2], p[3/2], p[5/2], y[1], y[2], y[3/2], y[5/...
 

I have the following function which came from a collaborator of a collaborator. It computes a generating function for a family of function's we're using.

GF_Generate := proc (n) 
	local summand, i, j;
	summand := U[0]^x[0]*mul(U[i]^y[i], i = 1 .. n)*mul(binomial(x[0]+add(w[j], j = 1 .. i), y[i])*p^y[i]*(1-p)^(x[0]+add(w[j], j = 1 .. i)-y[i])*binomial(x[0]-1+add(w[j], j = 1 .. i), x[0]-1+add(w[j], j = 1 .. i-1))*v[i]^(x[0]+add(w[j], j = 1 .. i-1))*(1-v[i])^w[i], i = 1 .. n);

	for j from n by -1 to 1 do summand := normal(sum(summand, y[j] = 0 .. infinity)) end do;
	for j from n by -1 to 1 do summand := normal(sum(summand, w[j] = 0 .. infinity)) end do;
	
	sum(summand, x[0] = 0 .. infinity) 
end proc;

For arguments of 2 and 3 it's quick and works fine on Maple18 (tested both GUI and terminal client on OS X), Maple2015 (tested terminal client only on RHEL linux), but generates a "too many levlels of recursion" error in Maple2016 (tested terminal client only on RHEL linux; same server as Maple2015 was tested). It's slow for arguments of 4 and above (45 minutes for n=4 on my mac laptop), so I haven't tested it thoroughly with larger arguments.

Any idea why this code fails in Maple 2016?

 

Hi Guys,

I will like to know how I can use Maple to plot a line of best fit given some data.

e.g for data like [x = 21.2, 24.7, 20.8, 20.8, 20.3] and [y = 16.6, 19.7,16.4,16.8,16.9].

Thanks.

Morning all,

I repeatedly solve (command solve) a collection of systems of inequalies. Some of them can have no solution, but I am able to check if a solution has been found or not, and then take some decision about the system in question.

I have placed a few print commands at different critical locations within the loop where those systems are constructed and possibly solved.
Every time solve fails finding a solution it returns me a "no solution found" warning.
In order to keep my printings readable, could it be possible to avoid those warnings ?
Is there some "try & catch" like mechanism to manage warnings ?

Thank you all in advance

I can't understand how to install this package "SADE" in Maple 17. Secondly, I am new to Maple. So Please guide me the process to install this package and how to use it. Thanks!

I'm trying plot  with implicitplot a expresion which involve Lambert W, but the result is very confuse, is it normal? Could i improve the result?, how?. Thank!

 

I've encountered a very strange issue with Maple.

The result returns differently with solve and fsolve after/before a variable is given a certain value. See attachment.

The result comes from solve (with variable epsilon) returns value of the same variable with imaginary part while the fsolve returns the correct answer.

Now how can I achieve the same result as fsolve via solve?

Thanks!

Maple_Question_Solve_Fsolve.mw

Maple_Question_Solve_Fsolve.pdf  (exported PDF from Maple)

Application that allows us to measure the reliability of a group of data through a row and columns called cronbach alpha at the same time to measure the correlation of items through the pearson correlation of even and odd items. It can run on maple 18 to maple 2017. This will be useful when we are developing a thesis in the statistical part.

In Spanish

StatisticsSocialCronbachPearson.zip

Lenin Araujo Castillo

Ambassador of Maple

 

 

Hi everyone,

 

I'm to simplify the expression cos(x)/sin(x) to cot(x). None of the "simplify" commands seem to work, I've tried assigning the expression to a name "a", then using the "simplify(a,trig)" command and it doesn't work either.

Anyone have any ideas on how I can tell maple to simplify this?

I've got some points:

I have to find the (equation of) line which has minimum distance from these points but the distance formula that I have to use is:
 (-m*x[i]-q+y[i])^2

I think we should settle with a for loop.

Thanks in advance

 

 

Hey guyz, I am in trouble with calculation attached integral. it is a simple function but a bit long. I can't solve it with maple, Do U have any idea?

 

 

intg.mw

 

 

First 992 993 994 995 996 997 998 Last Page 994 of 2231