Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I am trying to use the element properties Maple has in its ScientificConstants package. I am running into problems with the density of gaseous elements:

with(ScientificConstants);

Units:-UsingSystem(); # returns SI as expected

GetValue(Element('Si',density)); # returns 2329.0000 [kg/m^3] which is 2.329 g/cm^3, which is correct

GetValue(Element('H',density(gas))); # returns 88 [kg/m^3], which is incorrect.

PDG gives the density of hydrogen as 8.376E-5 g/cm^3, which is 0.08376 kg/m^3.  

Even more crazy for Krypton:

GetValue(Element('Kr',density(gas))); # returns 3677.000 [kg/m^3]. Heavy little buggers, these Kypton atoms! Should be 3.486 in the same units.

What gives? Am I missing something here?

Mac Dude

 

 

What is the meaning of the "0" in the series expansion

series(x/(-x2-x+1), x = 0); ( this is the Maple command)
                   
              x + x2  + 2 x3  + 3 x4 + 5 x5  + O(x6)  This is the results

This is use in Maple I've seen quite a bit for series. I assume the the series continues on. But I am not sure

Also is there any listing of what some of the symbols that maple uses???
 

Is there a way to specify different colors for different output variables? For example, if x,y, and z appear in the entire document as variables, I want x to be red, y to be blue, and z to be green whenever an output is displayed.

Thanks

hi..how i can rewrite section of this code as another form i,e ''for section''

I have a lot of line as this and runnig cise is time consuming.

is there another way to write this section in order to the runtime of the program is reduced??

thanks

for.mw
 

restart;

with(LinearAlgebra):

with(VectorCalculus):

#Digits:=5:
k:=6:

l:=0:

h:=1:

m:=4:

n:=4:

l1:=2*h:

l2:=2*h:

N:=0.5:

nu:=.3:

E_m:=70e9:

E_c:=380e9:

rho_m:=2702:

rho_c:=3800:

lambda_m:=nu*E_m/((1+nu)*(1-2*nu)):

lambda_c:=nu*E_c/((1+nu)*(1-2*nu)):

mu_m:=E_m/(2*(1+nu)):

mu_c:=E_c/(2*(1+nu)):

with(orthopoly):

for i from 0 to 5 do:
L(i):=sqrt((2*i+1)/2)*P(i,z):
end do:

Z:=rho_m+(rho_c-rho_m)*((1/2)+(z/h))^N;

2702+1098*(1/2+z)^.5

(1)

U:=lambda_m+(lambda_c-lambda_m)*((1/2)+(z/h))^N;

0.4038461538e11+0.1788461538e12*(1/2+z)^.5

(2)

S:=mu_m+(mu_c-mu_m)*((1/2)+(z/h))^N;

0.2692307692e11+0.1192307692e12*(1/2+z)^.5

(3)

d:=Matrix([[0,0,0,0,0,0,0,0],[sqrt(3),0,0,0,0,0,0,0],[0,sqrt(15),0,0,0,0,0,0],[sqrt(7),0,sqrt(35),0,0,0,0,0],[0,sqrt(27),0,sqrt(63),0,0,0,0],[sqrt(11),0,sqrt(55),0,sqrt(99),0,0,0],[0,sqrt(39),0,sqrt(91),0,sqrt(143),0,0],[sqrt(15),0,sqrt(75),0,sqrt(135),0,sqrt(195),0]]);

d := Matrix(8, 8, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 3^(1/2), (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 15^(1/2), (3, 3) = 0, (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (4, 1) = 7^(1/2), (4, 2) = 0, (4, 3) = 35^(1/2), (4, 4) = 0, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0, (4, 8) = 0, (5, 1) = 0, (5, 2) = 3*3^(1/2), (5, 3) = 0, (5, 4) = 3*7^(1/2), (5, 5) = 0, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (6, 1) = 11^(1/2), (6, 2) = 0, (6, 3) = 55^(1/2), (6, 4) = 0, (6, 5) = 3*11^(1/2), (6, 6) = 0, (6, 7) = 0, (6, 8) = 0, (7, 1) = 0, (7, 2) = 39^(1/2), (7, 3) = 0, (7, 4) = 91^(1/2), (7, 5) = 0, (7, 6) = 143^(1/2), (7, 7) = 0, (7, 8) = 0, (8, 1) = 15^(1/2), (8, 2) = 0, (8, 3) = 5*3^(1/2), (8, 4) = 0, (8, 5) = 3*15^(1/2), (8, 6) = 0, (8, 7) = 195^(1/2), (8, 8) = 0})

(4)

``

``

e2 := 0;

0

 

-0.3192307692e12*W(1)+0.4396880662e12*W(3)-0.1474586301e12*W(5)-0.9235575669e11*W(2)+0.1979090105e12*W(4)

(5)

``


 

Download for.mw

 

hi...

how I can dsolve this differential equations. parameter p is unkown.

I want to gain w(x) and u(x) and psi(x) and p.

thanks

sade.mw
 

restart; eq1 := (diff(psi(x), x))^2+(diff(u(x), x)+(8*(1/2))*(diff(w(x), x))^2)((diff(psi(x), x))^2)+3*(diff(w(x), x, x))+5*(diff(w(x), x, x))*(diff(psi(x), x))-7*(diff(u(x), x, x, x)+(8*(1/2))*(diff(w(x), x, x))^2+(3/2)*(diff(w(x), x, x, x))*(diff(w(x), x)))+3 = p

(diff(psi(x), x))^2+(diff(u(x), x))((diff(psi(x), x))^2)+4*(diff(w(x), x))((diff(psi(x), x))^2)^2+3*(diff(diff(w(x), x), x))+5*(diff(diff(w(x), x), x))*(diff(psi(x), x))-7*(diff(diff(diff(u(x), x), x), x))-28*(diff(diff(w(x), x), x))^2-(21/2)*(diff(diff(diff(w(x), x), x), x))*(diff(w(x), x))+3 = p

(1)

eq2 := (51-31)(diff(psi(x), x, x))+(52-2)(diff(w(x), x, x, x))+8*(diff(psi(x), x, x, x, x))-7*(diff(w(x), x)-psi(x)) = 0

70+8*(diff(diff(diff(diff(psi(x), x), x), x), x))-7*(diff(w(x), x))+7*psi(x) = 0

(2)

eq3 := 4*(diff(w(x), x, x)-(diff(psi(x), x)))+(23+11)(diff(psi(x), x, x, x))+(14+12)*(diff(w(x), x, x, x, x)) = 0

4*(diff(diff(w(x), x), x))-4*(diff(psi(x), x))+34+26*(diff(diff(diff(diff(w(x), x), x), x), x)) = 0

(3)

dsys3 := {eq1, eq2, eq3, psi(0) = 0, psi(1) = 0, u(0) = 0, u(1) = 0, w(0) = 0, w(1) = 0, ((D@@1)(psi))(0) = 0, ((D@@1)(psi))(1) = 0, ((D@@1)(w))(0) = 0, ((D@@1)(w))(1) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 1200, numeric, abserr = .1, output = array([.5]))

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 12, got 10

 

dsolve({eq2, eq3}, {psi(x), w(x)}):

with(PDEtools, casesplit, declare);

[casesplit, declare]

(4)

 


 

Download sade.mw

 

hi...

how i can dsolve this differential equations and obtain w(x) and U(x) and phi(x) analytical or numerically?

thanks

zah.mw
 

``

restart; L := 100; h := 1; eq1 := 1130*(diff(U(x), x, x))+1130*(diff(W(x), x))*(diff(W(x), x, x))+1130*(diff(U(x), x, x, x, x))

1130*(diff(diff(U(x), x), x))+1130*(diff(W(x), x))*(diff(diff(W(x), x), x))+1130*(diff(diff(diff(diff(U(x), x), x), x), x))

(1)

eq2 := 1130*(diff(W(x), x))*(diff(U(x), x, x)+(diff(W(x), x))*(diff(W(x), x, x)))+(diff(W(x), x, x))*(1130*(diff(U(x), x))+565*(diff(W(x), x))^2-2.2*(int(diff(varphi(z), z), z = -5/2 .. 5/2)))+(14125/6)*(diff(W(x), x, x, x, x, x, x))+(10405/6)*(diff(W(x), x, x, x, x))+10

1130*(diff(W(x), x))*(diff(diff(U(x), x), x)+(diff(W(x), x))*(diff(diff(W(x), x), x)))+(diff(diff(W(x), x), x))*(1130*(diff(U(x), x))+565*(diff(W(x), x))^2-2.2*(int(diff(varphi(z), z), z = -5/2 .. 5/2)))+(14125/6)*(diff(diff(diff(diff(diff(diff(W(x), x), x), x), x), x), x))+(10405/6)*(diff(diff(diff(diff(W(x), x), x), x), x))+10

(2)

eq3 := diff(varphi(z), z, z)-.35*(diff(W(x), x, x))

diff(diff(varphi(z), z), z)-.35*(diff(diff(W(x), x), x))

(3)

dsys3 := {eq1, eq2, eq3, U(0) = 0, U(L) = 0, W(0) = 0, W(L) = 0, `ϕ`(-(1/2)*h) = 0, `ϕ`(-(1/2)*h) = 2, ((D@@1)(W))(0) = 0, ((D@@1)(W))(L) = 0, ((D@@2)(W))(0) = 0, ((D@@2)(W))(L) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 1200, numeric, abserr = .1, output = array([.5]))

Error, (in dsolve/numeric/process_input) input system must be an ODE system, got independent variables {x, z}

 

``


 

Download zah.mw

 

Hi MaplePrimes,

another_recursive_sequence.mw

another_recursive_sequence.pdf

These two files have the same content.  One is a .pdf and the other is a Maple Worksheet.  I explore integer sequences of the form - 

a(r) = c*a(r-1)+d*a(r-2) with a(1) and a(2) given.

Some of these sequences are in (the Online Encyclopedia of Integer Sequences) OEIS.org and some are not.  If we restrict c to 1 and assume that a(1)=1 and a(2) = 2 we have the parameter d remaining.  See additional webpage - 

https://sites.google.com/site/recrusivefunction/

Let me know if you like the code.

Regards,

Matt

 

> {w = -4*mu, a[-1] = -12*mu/(a+b), a[0] = a[0], a[1] = 0, b[-1] = 0, b[0] = 0, b[1] = 0};
  /                     12 mu                                              
 { w = -4 mu, a[-1] = - -----, a[0] = a[0], a[1] = 0, b[-1] = 0, b[0] = 0,
  \                     a + b                                              

           \
   b[1] = 0 }
           /
> restart;
>
> w := -4*mu;
                                    -4 mu
> a[-1] := -12*mu/(a+b);
                                     12 mu
                                   - -----
                                     a + b
> a[0] := a[0];
                                    a[0]
> a[1] := 0;
                                      0
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 4 mu t
> P := sqrt(mu)*tan(A-sqrt(mu)*xi);
                      (1/2)    /      (1/2)             \
                    mu      tan\A - mu      (x - 4 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                (1/2) /             (1/2)    /      (1/2)             \\
           12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//
    a[0] - -------------------------------------------------------------
                                  /      (1/2)             \            
                       (a + b) tan\A - mu      (x - 4 mu t)/            
> Diff(u, x, t)+a*(Diff(u, x))*(Diff(u, x, y))+b*(Diff(u, `$`(x, 2)))*(Diff(u, y))+Diff(u, `$`(x, 3), y);
/   2   /            (1/2) /             (1/2)    /      (1/2)             \\\
|  d    |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|
|------ |a[0] - -------------------------------------------------------------|
| dt dx |                              /      (1/2)             \            |
\       \                   (a + b) tan\A - mu      (x - 4 mu t)/            /

  \     /    /    
  |     | d  |    
  | + a |--- |a[0]
  |     | dx |    
  /     \    \    

          (1/2) /             (1/2)    /      (1/2)             \\\\ /   2   /
     12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|| |  d    |
   - -------------------------------------------------------------|| |------ |
                            /      (1/2)             \            || | dy dx |
                 (a + b) tan\A - mu      (x - 4 mu t)/            // \       \

              (1/2) /             (1/2)    /      (1/2)             \\\\     /
         12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//||     |
  a[0] - -------------------------------------------------------------|| + b |
                                /      (1/2)             \            ||     |
                     (a + b) tan\A - mu      (x - 4 mu t)/            //     \

   2 /            (1/2) /             (1/2)    /      (1/2)             \\\\ /
  d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//|| |
  -- |a[0] - -------------------------------------------------------------|| |
     |                              /      (1/2)             \            || |
     \                   (a + b) tan\A - mu      (x - 4 mu t)/            // \

      /            (1/2) /             (1/2)    /      (1/2)             \\\\
   d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//||
  --- |a[0] - -------------------------------------------------------------||
   dy |                              /      (1/2)             \            ||
      \                   (a + b) tan\A - mu      (x - 4 mu t)/            //

     / 4 /            (1/2) /             (1/2)    /      (1/2)             \\
     |d  |       12 mu      \1 + lambda mu      tan\A - mu      (x - 4 mu t)//
   + |-- |a[0] - -------------------------------------------------------------
     |   |                              /      (1/2)             \            
     \   \                   (a + b) tan\A - mu      (x - 4 mu t)/            

  \\
  ||
  ||
  ||
  //
> value(%);
                       /                                 2\
              3        |       /      (1/2)             \ |
         96 mu  lambda \1 + tan\A - mu      (x - 4 mu t)/ /
         --------------------------------------------------
                               a + b                       

                                                                2   
                            /                                 2\    
                   3        |       /      (1/2)             \ |    
              96 mu  lambda \1 + tan\A - mu      (x - 4 mu t)/ /    
            - --------------------------------------------------- +
                                                         2          
                               /      (1/2)             \           
                    (a + b) tan\A - mu      (x - 4 mu t)/           

                                                  /             
                                                  |             
                             1                    |     (5/2) /
           -------------------------------------- \96 mu      \1
                                                3               
                      /      (1/2)             \                
           (a + b) tan\A - mu      (x - 4 mu t)/                

                       (1/2)    /      (1/2)             \\
            + lambda mu      tan\A - mu      (x - 4 mu t)//

                                               2\   
           /                                 2\ |   
           |       /      (1/2)             \ | |   
           \1 + tan\A - mu      (x - 4 mu t)/ / / -

                                                 /             
                             1                   |     (5/2) /
           ------------------------------------- \96 mu      \1
                      /      (1/2)             \               
           (a + b) tan\A - mu      (x - 4 mu t)/               

                                                            /
                       (1/2)    /      (1/2)             \\ |
            + lambda mu      tan\A - mu      (x - 4 mu t)// \1

                                           2\\
                 /      (1/2)             \ ||
            + tan\A - mu      (x - 4 mu t)/ //
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>

 

hi every one, i want to plot an indefinite integral  , it is some what complex and maple can not compute the answer, ( but numeric integration can be computed) , but we want to plot the output, what should we do ? tnx for help in advance

corrected.mw

how can we compute wighted norm of a matrix or a vector in maple? 


``

How can I convert the result (2) to equal to the trigonometric identity (kw/s^2)*tanh(a*s/2)?

``

g := kw*piecewise(t < a, t, t < 2*a, 2*a-t)

kw*piecewise(t < a, t, t < 2*a, 2*a-t)

(1)

simplify((int(exp(-s*t)*g, t = 0 .. a)+int(exp(-s*t)*g, t = a .. 2*a))/(1-exp(-2*a*s)))

-(exp(-a*s)-1)*kw/((exp(-a*s)+1)*s^2)

(2)

``


Download trigonometric_id.mw

 

this equation is complicated

how to dsolve for this equation for function f ?

f(t,x,diff(x,t)) - f(t,x,p) - (diff(x,t)-p)*diff(f(t,x,p), p) = tan(t)
 

how to find the contour of time series data? and how to find curvature function of this contour?

In this fuction the maximize is about at t=46 and x=46 but in the plot I look other max at other value, why?because is discontinus fuction?I need not the local max (it is potential energy but I think don't matter)optimization2enerpot.mws

updated:
P := evalm(p2 + c*vector([cos(q1+q2+q3), sin(q1+q2+q3)]));
 
restart:
with(Groebner):
p1 := vector([a*cos(q1), a*sin(q1)]);
p2 := evalm(p1 + b*vector([cos(q1+q2), sin(q1+q2)]));
P := evalm(p2 + c*vector([cos(q1+q2+q3), sin(q1+q2+q3)]));
Pe := map(expand, P);
A := {cos(q1) = c1, sin(q1) =s1, cos(q2)=c2, sin(q2)=s2, cos(q3)=c3, sin(q3)=s3};
P := subs(A, op(Pe));
F1 := [x - P[1], y - P[2], s1^2+c1^2-1, s2^2+c2^2-1, s3^2+c3^2-1 ];
F2 := subs({a=1, b=1, c=1}, F1);
 
g2 := Basis(F2, plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[1], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[2], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[3], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[4], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[5], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[6], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[7], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[8], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[9], plex(c3, s3, c2, s2, c1, s1));
 
                                   1, c1
                               2       2    2   2
                           16 y  + 16 x , s1  s2
                                           2
                                 8 x, c1 s2
                                2      2    2  
                             2 y  + 2 x , s1  c2
                                 2 x, c1 c2
                            3            2        
                         2 x  - 2 x + 2 y  x, s2 c2
                                        2
                                   1, c2
                                   2 x, s3
                                    2, c3
originally i think
g2[1], g2[7], g2[9] have single variables c1, c2, c3 respectively
can be used to solve system
 
but without x and y, these equations can not be used
if choose leading term has x and y , but there is no single variable s1 or c1.
 
originally expect solve as follows
g2spec := subs({x=1, y=1/2}, [g2[3],g2[5],g2[6]]);
S1 := [solve([g2spec[1]])];
q1a := evalf(arccos(S1[1]));
q1b := evalf(arccos(S1[2]));
S2 := [solve(subs(s1=S1[1], g2spec[2])), solve(subs(s1=S1[2], g2spec[2])) ];
q2a := evalf(arccos(S2[1]));
q2b := evalf(arccos(S2[2]));
S3 := [solve(subs(s1=S2[1], g2spec[2])), solve(subs(s1=S2[2], g2spec[2])) ];
q2a := evalf(arccos(S3[1]));
q2b := evalf(arccos(S3[2]));
 
First 946 947 948 949 950 951 952 Last Page 948 of 2239