Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

While solving for i1 encounter too many terms. How can I simplify it so that only " Pn,Pr and w" remain, with all other variables grouped into constants, so that the equation for the optimal i1​ becomes small and manageable?
 

restart

kernelopts(version)

`Maple 2019.1, X86 64 WINDOWS, May 21 2019, Build ID 1399874`

(1)

Pi1 := (w-i1)*(1/2+(i1-i2)/(2*tau))*(1-(Pn-Pr)/(1-delta))+(s-i1-Crr)*(1/2+(i1-i2)/(2*tau))*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+Ce*rho0*(((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)*eta+1-(Pn-Pr)/(1-delta))

(w-i1)*(1/2+(1/2)*(i1-i2)/tau)*(1-(Pn-Pr)/(1-delta))+(s-i1-Crr)*(1/2+(1/2)*(i1-i2)/tau)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+Ce*rho0*(((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)*eta+1-(Pn-Pr)/(1-delta))

(2)

diff(Pi1, i1) = 0

-(1/2+(1/2)*(i1-i2)/tau)*(1-(Pn-Pr)/(1-delta))+(1/2)*(w-i1)*(1-(Pn-Pr)/(1-delta))/tau-(1/2+(1/2)*(i1-i2)/tau)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+(1/2)*(s-i1-Crr)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)/tau+(s-i1-Crr)*(1/2+(1/2)*(i1-i2)/tau)*beta*upsilon/delta+Ce*rho0*beta*upsilon*eta/delta = 0

(3)

solve(%, i1)

-(1/3)*(Crr*beta*delta*upsilon-beta*delta*i2*upsilon-beta*delta*s*upsilon+beta*delta*tau*upsilon-Crr*beta*upsilon+beta*i2*upsilon+beta*s*upsilon-beta*tau*upsilon-delta*Pr+delta^2-(6*Ce*beta^2*delta^2*eta*rho0*tau*upsilon^2-12*Ce*beta^2*delta*eta*rho0*tau*upsilon^2+6*Ce*beta^2*eta*rho0*tau*upsilon^2+Crr^2*beta^2*delta^2*upsilon^2+Crr*beta^2*delta^2*i2*upsilon^2-2*Crr*beta^2*delta^2*s*upsilon^2-Crr*beta^2*delta^2*tau*upsilon^2+beta^2*delta^2*i2^2*upsilon^2-beta^2*delta^2*i2*s*upsilon^2-2*beta^2*delta^2*i2*tau*upsilon^2+beta^2*delta^2*s^2*upsilon^2+beta^2*delta^2*s*tau*upsilon^2+beta^2*delta^2*tau^2*upsilon^2-2*Crr^2*beta^2*delta*upsilon^2-2*Crr*beta^2*delta*i2*upsilon^2+4*Crr*beta^2*delta*s*upsilon^2+2*Crr*beta^2*delta*tau*upsilon^2-2*beta^2*delta*i2^2*upsilon^2+2*beta^2*delta*i2*s*upsilon^2+4*beta^2*delta*i2*tau*upsilon^2-2*beta^2*delta*s^2*upsilon^2-2*beta^2*delta*s*tau*upsilon^2-2*beta^2*delta*tau^2*upsilon^2+Crr^2*beta^2*upsilon^2+3*Crr*Pn*beta*delta^2*upsilon-2*Crr*Pr*beta*delta^2*upsilon+Crr*beta^2*i2*upsilon^2-2*Crr*beta^2*s*upsilon^2-Crr*beta^2*tau*upsilon^2+2*Crr*beta*delta^3*upsilon-3*Pn*beta*delta^2*s*upsilon+3*Pn*beta*delta^2*upsilon*w-Pr*beta*delta^2*i2*upsilon+2*Pr*beta*delta^2*s*upsilon+Pr*beta*delta^2*tau*upsilon-3*Pr*beta*delta^2*upsilon*w+beta^2*i2^2*upsilon^2-beta^2*i2*s*upsilon^2-2*beta^2*i2*tau*upsilon^2+beta^2*s^2*upsilon^2+beta^2*s*tau*upsilon^2+beta^2*tau^2*upsilon^2+beta*delta^3*i2*upsilon-2*beta*delta^3*s*upsilon-beta*delta^3*tau*upsilon+3*beta*delta^3*upsilon*w-3*Crr*Pn*beta*delta*upsilon+Crr*Pr*beta*delta*upsilon-4*Crr*beta*delta^2*upsilon+3*Pn*beta*delta*s*upsilon-3*Pn*beta*delta*upsilon*w+2*Pr*beta*delta*i2*upsilon-Pr*beta*delta*s*upsilon-2*Pr*beta*delta*tau*upsilon+3*Pr*beta*delta*upsilon*w-2*beta*delta^2*i2*upsilon+4*beta*delta^2*s*upsilon+2*beta*delta^2*tau*upsilon-6*beta*delta^2*upsilon*w+Crr*Pr*beta*upsilon+2*Crr*beta*delta*upsilon+Pr^2*delta^2-Pr*beta*i2*upsilon-Pr*beta*s*upsilon+Pr*beta*tau*upsilon-2*Pr*delta^3+beta*delta*i2*upsilon-2*beta*delta*s*upsilon-beta*delta*tau*upsilon+3*beta*delta*upsilon*w+delta^4-2*Pr^2*delta+4*Pr*delta^2-2*delta^3+Pr^2-2*Pr*delta+delta^2)^(1/2)+Pr-delta)/(beta*upsilon*(-1+delta)), -(1/3)*(Crr*beta*delta*upsilon-beta*delta*i2*upsilon-beta*delta*s*upsilon+beta*delta*tau*upsilon-Crr*beta*upsilon+beta*i2*upsilon+beta*s*upsilon-beta*tau*upsilon-delta*Pr+delta^2+(6*Ce*beta^2*delta^2*eta*rho0*tau*upsilon^2-12*Ce*beta^2*delta*eta*rho0*tau*upsilon^2+6*Ce*beta^2*eta*rho0*tau*upsilon^2+Crr^2*beta^2*delta^2*upsilon^2+Crr*beta^2*delta^2*i2*upsilon^2-2*Crr*beta^2*delta^2*s*upsilon^2-Crr*beta^2*delta^2*tau*upsilon^2+beta^2*delta^2*i2^2*upsilon^2-beta^2*delta^2*i2*s*upsilon^2-2*beta^2*delta^2*i2*tau*upsilon^2+beta^2*delta^2*s^2*upsilon^2+beta^2*delta^2*s*tau*upsilon^2+beta^2*delta^2*tau^2*upsilon^2-2*Crr^2*beta^2*delta*upsilon^2-2*Crr*beta^2*delta*i2*upsilon^2+4*Crr*beta^2*delta*s*upsilon^2+2*Crr*beta^2*delta*tau*upsilon^2-2*beta^2*delta*i2^2*upsilon^2+2*beta^2*delta*i2*s*upsilon^2+4*beta^2*delta*i2*tau*upsilon^2-2*beta^2*delta*s^2*upsilon^2-2*beta^2*delta*s*tau*upsilon^2-2*beta^2*delta*tau^2*upsilon^2+Crr^2*beta^2*upsilon^2+3*Crr*Pn*beta*delta^2*upsilon-2*Crr*Pr*beta*delta^2*upsilon+Crr*beta^2*i2*upsilon^2-2*Crr*beta^2*s*upsilon^2-Crr*beta^2*tau*upsilon^2+2*Crr*beta*delta^3*upsilon-3*Pn*beta*delta^2*s*upsilon+3*Pn*beta*delta^2*upsilon*w-Pr*beta*delta^2*i2*upsilon+2*Pr*beta*delta^2*s*upsilon+Pr*beta*delta^2*tau*upsilon-3*Pr*beta*delta^2*upsilon*w+beta^2*i2^2*upsilon^2-beta^2*i2*s*upsilon^2-2*beta^2*i2*tau*upsilon^2+beta^2*s^2*upsilon^2+beta^2*s*tau*upsilon^2+beta^2*tau^2*upsilon^2+beta*delta^3*i2*upsilon-2*beta*delta^3*s*upsilon-beta*delta^3*tau*upsilon+3*beta*delta^3*upsilon*w-3*Crr*Pn*beta*delta*upsilon+Crr*Pr*beta*delta*upsilon-4*Crr*beta*delta^2*upsilon+3*Pn*beta*delta*s*upsilon-3*Pn*beta*delta*upsilon*w+2*Pr*beta*delta*i2*upsilon-Pr*beta*delta*s*upsilon-2*Pr*beta*delta*tau*upsilon+3*Pr*beta*delta*upsilon*w-2*beta*delta^2*i2*upsilon+4*beta*delta^2*s*upsilon+2*beta*delta^2*tau*upsilon-6*beta*delta^2*upsilon*w+Crr*Pr*beta*upsilon+2*Crr*beta*delta*upsilon+Pr^2*delta^2-Pr*beta*i2*upsilon-Pr*beta*s*upsilon+Pr*beta*tau*upsilon-2*Pr*delta^3+beta*delta*i2*upsilon-2*beta*delta*s*upsilon-beta*delta*tau*upsilon+3*beta*delta*upsilon*w+delta^4-2*Pr^2*delta+4*Pr*delta^2-2*delta^3+Pr^2-2*Pr*delta+delta^2)^(1/2)+Pr-delta)/(beta*upsilon*(-1+delta))

(4)

simplify(%)

Error, (in simplify/do) invalid simplification command

 
 

``

Download Q_Simplify.mw

any idea what match fail on this example? is somethinbg wrong I am doing?

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

restart;

A:=2*y(3)^4+5;
match(A=k1*y(k2)^k3+k4,y,'la')

2*y(3)^4+5

false

patmatch(A,k1::anything*y(k2::anything)^(k3::anything)+k4::anything,'la');
la

true

[k1 = 2, k2 = 3, k3 = 4, k4 = 5]

Download why_match_fail_sept_21_2025.mw

Update:
I think match can only do it if the main "variable"   is a variable and not a "function". In this example y(.) is function, so that is why it failed to match. For example this works:

A:=2*y^3+4;
match(A=k1*y^k2+k3,y,'la')

And gives true, since "y" here is not a "function".

But this makes match not very useful to use for parsing. patmatch seems a little more practical to use.

in this method i don't know in most of short equation i try to find the parameter but is just evaluating and nothing come up i don't know my way is wrong or write but i think i am right  but parameter not coming out, beside this in this equation give  me a warning regarding the parameters which say number of solution is more than 100 and dint show me that , how i can find the solution better than this?

f-p-.mw

Why is maple so useless? It can't even display a simple matrix equation without hours of user/forum intervention. I've never had this problem in the past. How does anyone get any work done? See example and compare with screenshot below.   why_is_maple_so_useless.mw

The left hand side contains the correct information but won't display it when evaluated. I even tried disabling matrix scrolling.

The default font size in the code edit region box of my worksheet is too small. I would like to change it without changing font sizes outside of the code edit region. I would be glad if I could do this within an individual worksheet, but it would be better if I could make this global in Maple 2025.

There doesn't seem to be any obvious way of doing this?

Hi,

I am looking for an idea to build a mixed and randomized series on unit conversions (volumes, surface, capacity, areas) in the form of two tables (2 columns & 8 rows). The first table would contain the questions, and the second one the solutions, so that students can use it for self-assessment. Do you have any ideas to suggest? Thanks!

I wanted to check that the input  has the pattern   symbol(symbol), which will match any of   y(x), or f(x) or A(B) and so on.

But using patmatch does not work. Using patmatch(h(z),y::symbol(x::symbol),'la');  or even patmatch(h(z),'y'::anything('x'::anything),'la'); all return false. I know I can do patmatch(h(z),func::function(name),'la'); and this returns true, but this matches h(z,r) and matches h(z,r,t) and matches h(z,r,t,u) and so on. 

I wanted to match only   SYMBOL(SYMBOL), i..e. one symbol followed by "(" followed by one symbol followed by closing ")"

For reference, this is what I am looking for 

I know I can use other ways in Maple to do this (may be typematch and and others). But wanted to see if patmatch works on this and why it is failing.

Can this be done using patmatch?

I need to isolate i1​ and move the remaining terms to the other side. However, I’m encountering an error while doing this.

Note: All parameters are non-negative (positive or equal to zero).

Attaching sheet: Question_Isolate_i1.mw

Maple 2025.1 unable to solve this ode. Sympy gives the following two solutions which Maples verifies are correct.

Any trick or option that can help dsolve find these solutions?
 

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

restart;

ode:=diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x));

diff(y(x), x) = (1+cos(x)*sin(y(x)))*tan(y(x))

sol:=dsolve(ode);

sol_1:=y(x)=arcsin( 2*exp(x) / ( c__1 + sqrt(2)*exp(x) * sin(x+Pi/4) ) ) + Pi

y(x) = arcsin(2*exp(x)/(c__1+2^(1/2)*exp(x)*sin(x+(1/4)*Pi)))+Pi

odetest(sol_1,ode)

0

sol_2:=y(x)=arcsin( 2*exp(x) / ( c__1 - sqrt(2)*exp(x) * sin(x+Pi/4) ) ) ;

y(x) = arcsin(2*exp(x)/(c__1-2^(1/2)*exp(x)*sin(x+(1/4)*Pi)))

odetest(sol_2,ode)

0

 


 

Download How_to_find_solution_sept_20_2025.mw

update:

OK, found out how. Needed transformation u(x)=sin(y(x)). Maple probably did not have this in one of the things to try.

 

restart;

ode:=diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x));
sol:=dsolve(ode);

diff(y(x), x) = (1+cos(x)*sin(y(x)))*tan(y(x))

tr:=y(x)=arcsin(u(x));
PDEtools:-dchange(tr,ode,[u(x)]):
dsolve(%);
sol:=y(x)=arcsin(rhs(%));
odetest(sol,ode)
 

y(x) = arcsin(u(x))

u(x) = -2/(-2*exp(-x)*c__1+sin(x)+cos(x))

y(x) = -arcsin(2/(-2*exp(-x)*c__1+sin(x)+cos(x)))

0


 

Download How_to_find_solution_sept_20_2025_V2.mw

 

 

int(lambda*exp(-lambda*t), t=0..infinity) 

will get the integration result of 1

if we replace lambda with real numerical value of 1e5

we will get the integration result of 1

if we replace lambda with real numerical value  of1e6

we will get 0

but if we set lambda with an integer

lambda:= 1000000

the integration would be correct and equal to 1

why is this ?

Why when given IC for this ode, where the IC do not really makes much sense, so was not used. But the question is on the format of the output of the Maple dsolve. It gives solution as [{y(t) = c__1}]  instead of y(t) = c__1
 

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

restart;

ode:=diff(y(t),t)=0;
IC:=y(0)=t;
sol:=dsolve(ode)

diff(y(t), t) = 0

y(0) = t

y(t) = c__1

sol:=dsolve([ode,IC])

[{y(t) = c__1}]


 

Related question. Since Maple did not use the IC, should there have been warning message generated that IC was ignored?

 

Download strange_format_of_solution_sept_19_2025.mw

 

 

This post presents a work I did to answer this recent question by @AHSAN.

I believe that the two procedures I developed could be of interest to Mapleprimes members. Here they are in their most recent forms. However, I think they can still be improved and completed, and I am open to your suggestions for developing them further in this direction.

BarGraph_2_Categories.mw
Illustration


BarGraph_3_Categories.mw
Illustration

 

Good day.

I am looking into the behaviour of a function, V, that depends on several parameter values; these values are fixed in the attached example. However, I have encountered an issue that is puzzling me and I was hoping that someone may be able to shine a light on this for me.

Basically,  I would like to understand how the solution, V, behaves as the value of exponent, beta, approaches infinity.

Straightforward analysis suggests that the value of V tends to -10 as beta grows infinitely large (s -> C, and beta ->infinity and so, V -> -10 ... so far, so good).

However, when the function is plotted, the solution seems to converge to a value, 6.5, as beta tends to a very large number (10^17).

Now .. here's the mystery .. there appears to be a critical value of around 7.854 x 10^17; here, the limit seems to switch from V=6.5 to -10. Does this phenomenon correspond to a discontinuity or is it related to the computational process? Are there any built-in routines in Maple to check for such potential conditions?

Thanks for reading!

MaplePrimes_Sep_19.mw

Before at most a year i asked about this applying long wave limit which is coming from some kind of series which i am not sure to how get this result from the series but i provide just the two function of series for appyting the long wave limit and then we can generalized to N value of them, i asked to Ai too he give me a good explanation and somehow he did programing but  i am not cool with programing of Ai,  i  am looking for result eq14 and eq 20 , i have a series for eq(12) N=2 and for other N too but by applying long wave limit it is become to eq(14) and then F[4] becone to eq(20) i want that result by don't have any idea how reach it  

Long-wave-limit-testing.mw

Ai-result.mw

update F4

In the attached file "test," a system of ordinary differential equations is solved. I was able to create the (r, phi) plot. But how are the (t, r(t)) and (t, phi(t)) plots executed with the calculation results?
What does "range" mean in the (r, phi) plot command? Is there a more precise numerical method than the Runge-Kutta method used in "test" (perhaps a finer t-division of the axis?)?

restart

eq1 := diff(r(t), t)+1+cos(`ϕ`(t)) = 0; eq2 := diff(`ϕ`(t), t)+1-sin(`ϕ`(t))/r(t) = 0

diff(r(t), t)+1+cos(varphi(t)) = 0

 

diff(varphi(t), t)+1-sin(varphi(t))/r(t) = 0

(1)

``

ics := r(0) = 2.0, `ϕ`(0) = Pi/(1.5)

r(0) = 2.0, varphi(0) = 2.094395103

(2)

soln := dsolve({eq1, eq2, ics}, {r(t), `ϕ`(t)}, numeric, start = 0, range = 0 .. 3)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false, ( "right" ) = 3., ( "left" ) = 0. ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 1, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 3.0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .19535812688284548, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = 2.0, (2) = 2.094395103}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = .22047804756371955, (2) = 2.873107829856247}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = -0.3386381880498868e-1, (2) = .17766918858144054}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = -0.3386381880498868e-1, (1, 2) = -0.377585836518608e-1, (1, 3) = -0.3708633582928045e-1, (1, 4) = -0.34124098676952874e-1, (1, 5) = -0.3363280624230314e-1, (1, 6) = -0.3641604213065852e-1, (2, 1) = .17766918858144054, (2, 2) = .22761845480999643, (2, 3) = .2192661580732893, (2, 4) = .18085452152511095, (2, 5) = .17405774363177118, (2, 6) = .2108205409669659}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = .22040658040387567, (2) = 2.873512341267432}, datatype = float[8], order = C_order), Array(1..2, {(1) = .21910457742849349, (2) = 2.8806072512024623}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0.17347438180381758e-7, (2) = 0.10386005389051434e-7}, datatype = float[8], order = C_order), Array(1..2, {(1) = .22270057794927467, (2) = 2.8597843388449604}, datatype = float[8], order = C_order), Array(1..2, {(1) = -0.3569387106220412e-1, (2) = .20146120823190228}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..2, {(1) = 2.0, (2) = 2.094395103}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = -.4999999994744918, (2) = -.5669872982594819}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = .0, (1, 2) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = varphi(t)]`; YP[1] := -1-cos(Y[2]); YP[2] := -1+sin(Y[2])/Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = varphi(t)]`; YP[1] := -1-cos(Y[2]); YP[2] := -1+sin(Y[2])/Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] )), ( 3 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 1, (9) = 0, (10) = 1, (11) = 85, (12) = 85, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 155, (19) = 30000, (20) = 5, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 3.0, (2) = 0.10e-5, (3) = .10304186874784538, (4) = 0.500001e-14, (5) = .0, (6) = .19535812688284548, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = 2.0, (2) = 2.094395103}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = .22047804756371955, (2) = 2.873107829856247}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = -0.3386381880498868e-1, (2) = .17766918858144054}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = -0.3386381880498868e-1, (1, 2) = -0.377585836518608e-1, (1, 3) = -0.3708633582928045e-1, (1, 4) = -0.34124098676952874e-1, (1, 5) = -0.3363280624230314e-1, (1, 6) = -0.3641604213065852e-1, (2, 1) = .17766918858144054, (2, 2) = .22761845480999643, (2, 3) = .2192661580732893, (2, 4) = .18085452152511095, (2, 5) = .17405774363177118, (2, 6) = .2108205409669659}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = .22040658040387567, (2) = 2.873512341267432}, datatype = float[8], order = C_order), Array(1..2, {(1) = .21910457742849349, (2) = 2.8806072512024623}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0.17347438180381758e-7, (2) = 0.10386005389051434e-7}, datatype = float[8], order = C_order), Array(1..2, {(1) = .22270057794927467, (2) = 2.8597843388449604}, datatype = float[8], order = C_order), Array(1..2, {(1) = -0.3569387106220412e-1, (2) = .20146120823190228}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..2, {(1) = .22270057794927467, (2) = 2.8597843388449604}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = -0.3386381880498868e-1, (2) = .17766918858144054}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = 2.938831384122585, (1, 2) = .22270057794927467, (2, 0) = .22270057794927467, (2, 1) = 2.8597843388449604, (2, 2) = 2.9634858657986514, (3, 0) = 2.9634858657986514, (3, 1) = .221748342025735, (3, 2) = 2.8656651287650265, (4, 0) = 2.8656651287650265, (4, 1) = 2.988140347474718, (4, 2) = .22083401075704298, (5, 0) = .22083401075704298, (5, 1) = 2.871070168038091, (5, 2) = 3.012794829150785, (6, 0) = 3.012794829150785, (6, 1) = .21995387131675959, (6, 2) = 2.876038628847415}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = varphi(t)]`; YP[1] := -1-cos(Y[2]); YP[2] := -1+sin(Y[2])/Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (Array(1..85, 0..2, {(1, 1) = .0, (1, 2) = 2.0, (2, 0) = 2.0, (2, 1) = 2.094395103, (2, 2) = 0.4883953172071137e-1, (3, 0) = 0.4883953172071137e-1, (3, 1) = 1.9749957636720312, (3, 2) = 2.0670025471235336, (4, 0) = 2.0670025471235336, (4, 1) = 0.9767906344142274e-1, (4, 2) = 1.9488280959770066, (5, 0) = 1.9488280959770066, (5, 1) = 2.04021084709857, (5, 2) = .1465185951621341, (6, 0) = .1465185951621341, (6, 1) = 1.9215068608366304, (6, 2) = 2.0140263347936975, (7, 0) = 2.0140263347936975, (7, 1) = .19535812688284548, (7, 2) = 1.893044054829213, (8, 0) = 1.893044054829213, (8, 1) = 1.988457425914424, (8, 2) = .280900476384457, (9, 0) = .280900476384457, (9, 1) = 1.8404843242365583, (9, 2) = 1.9451906076368206, (10, 0) = 1.9451906076368206, (10, 1) = .36644282588606847, (10, 2) = 1.7845598519772645, (11, 0) = 1.7845598519772645, (11, 1) = 1.9039191638716142, (11, 2) = .4519851753876799, (12, 0) = .4519851753876799, (12, 1) = 1.7253847367916073, (12, 2) = 1.8647415453538858, (13, 0) = 1.8647415453538858, (13, 1) = .5375275248892915, (13, 2) = 1.6630931456083156, (14, 0) = 1.6630931456083156, (14, 1) = 1.827785275008053, (14, 2) = .616075451639432, (15, 0) = .616075451639432, (15, 1) = 1.603283300376125, (15, 2) = 1.7959429678186245, (16, 0) = 1.7959429678186245, (16, 1) = .6946233783895726, (16, 2) = 1.5411171896322202, (17, 0) = 1.5411171896322202, (17, 1) = 1.7662563673049378, (17, 2) = .7731713051397131, (18, 0) = .7731713051397131, (18, 1) = 1.4767537695478887, (18, 2) = 1.7389080337794152, (19, 0) = 1.7389080337794152, (19, 1) = .8517192318898537, (19, 2) = 1.4103708331171143, (20, 0) = 1.4103708331171143, (20, 1) = 1.7141191124530415, (20, 2) = .9177358538213208, (21, 0) = .9177358538213208, (21, 1) = 1.3531616403350515, (21, 2) = 1.6954560815446786, (22, 0) = 1.6954560815446786, (22, 1) = .983752475752788, (22, 2) = 1.2948000182859192, (23, 0) = 1.2948000182859192, (23, 1) = 1.6789696037423298, (23, 2) = 1.0497690976842553, (24, 0) = 1.0497690976842553, (24, 1) = 1.235434387752726, (24, 2) = 1.664875276796809, (25, 0) = 1.664875276796809, (25, 1) = 1.1157857196157224, (25, 2) = 1.1752283323792916, (26, 0) = 1.1752283323792916, (26, 1) = 1.6534251811289784, (26, 2) = 1.17181879714737, (27, 0) = 1.17181879714737, (27, 1) = 1.1236019582656207, (27, 2) = 1.6459973906746916, (28, 0) = 1.6459973906746916, (28, 1) = 1.2278518746790175, (28, 2) = 1.0716241501398995, (29, 0) = 1.0716241501398995, (29, 1) = 1.640888665777501, (29, 2) = 1.2838849522106648, (30, 0) = 1.2838849522106648, (30, 1) = 1.0194315393350855, (30, 2) = 1.6383329167946707, (31, 0) = 1.6383329167946707, (31, 1) = 1.3399180297423123, (31, 2) = .967173884862351, (32, 0) = .967173884862351, (32, 1) = 1.63859579173605, (32, 2) = 1.3895931786245055, (33, 0) = 1.3895931786245055, (33, 1) = .9209233700331131, (33, 2) = 1.6414255181271569, (34, 0) = 1.6414255181271569, (34, 1) = 1.4392683275066989, (34, 2) = .8748784230151254, (35, 0) = .8748784230151254, (35, 1) = 1.646939265151252, (35, 2) = 1.4889434763888922, (36, 0) = 1.4889434763888922, (36, 1) = .8291788145340493, (36, 2) = 1.6553957182885823, (37, 0) = 1.6553957182885823, (37, 1) = 1.5386186252710854, (37, 2) = .7839766015575426, (38, 0) = .7839766015575426, (38, 1) = 1.667077404650224, (38, 2) = 1.5687462276863915, (39, 0) = 1.5687462276863915, (39, 1) = .7568735457220451, (39, 2) = 1.67586213435023, (40, 0) = 1.67586213435023, (40, 1) = 1.5988738301016974, (40, 2) = .7300540461536099, (41, 0) = .7300540461536099, (41, 1) = 1.6860182095468146, (41, 2) = 1.6290014325170035, (42, 0) = 1.6290014325170035, (42, 1) = .7035599816612077, (42, 2) = 1.697620293665825, (43, 0) = 1.697620293665825, (43, 1) = 1.6591290349323096, (43, 2) = .6774351893350706, (44, 0) = .6774351893350706, (44, 1) = 1.7107443248264431, (44, 2) = 1.6892566373476157, (45, 0) = 1.6892566373476157, (45, 1) = .6517254613446625, (45, 2) = 1.7254668242982154, (46, 0) = 1.7254668242982154, (46, 1) = 1.7193842397629218, (46, 2) = .6264787480696691, (47, 0) = .6264787480696691, (47, 1) = 1.7418650301879928, (47, 2) = 1.7495118421782276, (48, 0) = 1.7495118421782276, (48, 1) = .6017446545171511, (48, 2) = 1.7600130123373363, (49, 0) = 1.7600130123373363, (49, 1) = 1.7796394445935337, (49, 2) = .5775742015482379, (50, 0) = .5775742015482379, (50, 1) = 1.7799796411830302, (50, 2) = 1.8061947635665625, (51, 0) = 1.8061947635665625, (51, 1) = .5567786183444859, (51, 2) = 1.7991366433344658, (52, 0) = 1.7991366433344658, (52, 1) = 1.832750082539591, (52, 2) = .5364978626253581, (53, 0) = .5364978626253581, (53, 1) = 1.8197927195419688, (53, 2) = 1.8593054015126196, (54, 0) = 1.8593054015126196, (54, 1) = .5167682561523157, (54, 2) = 1.8419764809526942, (55, 0) = 1.8419764809526942, (55, 1) = 1.8858607204856483, (55, 2) = .49762581223390895, (56, 0) = .49762581223390895, (56, 1) = 1.8657055776358582, (56, 2) = 1.9097149107830291, (57, 0) = 1.9097149107830291, (57, 1) = .4809602717718633, (57, 2) = 1.8883435286863, (58, 0) = 1.8883435286863, (58, 1) = 1.93356910108041, (58, 2) = .4648218596764317, (59, 0) = .4648218596764317, (59, 1) = 1.9122277759833848, (59, 2) = 1.9574232913777907, (60, 0) = 1.9574232913777907, (60, 1) = .4492340389199136, (60, 2) = 1.9373409026689865, (61, 0) = 1.9373409026689865, (61, 1) = 1.9812774816751715, (61, 2) = .4342187292534649, (62, 0) = .4342187292534649, (62, 1) = 1.9636521189398293, (62, 2) = 2.004263852787264, (63, 0) = 2.004263852787264, (63, 1) = .4203101092586252, (63, 2) = 1.990098117377601, (64, 0) = 1.990098117377601, (64, 1) = 2.027250223899356, (64, 2) = .4069674582769166, (65, 0) = .4069674582769166, (65, 1) = 2.0175622542309486, (65, 2) = 2.050236595011448, (66, 0) = 2.050236595011448, (66, 1) = .3942039633751688, (66, 2) = 2.0459772536535046, (67, 0) = 2.0459772536535046, (67, 1) = 2.07322296612354, (67, 2) = .38203013565972604, (68, 0) = .38203013565972604, (68, 1) = 2.075261255402451, (68, 2) = 2.098058121270015, (69, 0) = 2.098058121270015, (69, 1) = .3695485759576045, (69, 2) = 2.107766300909261, (70, 0) = 2.107766300909261, (70, 1) = 2.1228932764164896, (70, 2) = .3577689175737098, (71, 0) = .3577689175737098, (71, 1) = 2.141033682628699, (71, 2) = 2.1477284315629643, (72, 0) = 2.1477284315629643, (72, 1) = .3466910657927155, (72, 2) = 2.174907057374285, (73, 0) = 2.174907057374285, (73, 1) = 2.1725635867094395, (73, 2) = .33631017357287435, (74, 0) = .33631017357287435, (74, 1) = 2.20921581927419, (74, 2) = 2.196849383761043, (75, 0) = 2.196849383761043, (75, 1) = .3268235884660522, (75, 2) = 2.2430115231100825, (76, 0) = 2.2430115231100825, (76, 1) = 2.221135180812647, (76, 2) = .3179799207626713, (77, 0) = .3179799207626713, (77, 1) = 2.276869570385799, (77, 2) = 2.2454209778642507, (78, 0) = 2.2454209778642507, (78, 1) = .309760915843174, (78, 2) = 2.3106091885511706, (79, 0) = 2.3106091885511706, (79, 1) = 2.2697067749158544, (79, 2) = .3021447460238304, (80, 0) = .3021447460238304, (80, 1) = 2.3440521970551167, (80, 2) = 2.2915527181738296, (81, 0) = 2.2915527181738296, (81, 1) = .2957879507637747, (81, 2) = 2.373738294552842, (82, 0) = 2.373738294552842, (82, 1) = 2.3133986614318047, (82, 2) = .28987791521959144, (83, 0) = .28987791521959144, (83, 1) = 2.402922916310279, (83, 2) = 2.3352446046897803, (84, 0) = 2.3352446046897803, (84, 1) = .28439275840127815, (84, 2) = 2.4314945706700617, (85, 0) = 2.4314945706700617, (85, 1) = 2.3570905479477555, (85, 2) = .27930964339102904}, datatype = float[8], order = C_order)), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = r(t), Y[2] = varphi(t)]`; YP[1] := -1-cos(Y[2]); YP[2] := -1+sin(Y[2])/Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] )), ( 4 ) = (3)  ] ); _y0 := Array(0..2, {(1) = 0., (2) = 2.0}); _vmap := array( 1 .. 2, [( 1 ) = (1), ( 2 ) = (2)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, r(t), varphi(t)], (4) = []}); _vars := _dat[3]; _pars := map(lhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(3)

plots[odeplot](soln, [r(t), `&varphi;`(t)])

 

Download test.mw

1 2 3 4 5 6 7 Last Page 1 of 2221