Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

What is the correct way to plot objects which have been created by the geometry library.

e.g. circle, point, line, e.g.

restart; with(geometry)

point(B, 2, 0)

B

(1)

form(B)

point2d

(2)

coordinates(B)

[2, 0]

(3)

with(plots)

display(pointplot(B))

Error, (in plots:-pointplot) points are not in the correct format

 

NULL

Download plotpoint.mw

Hi everyone
how can i overcome this error to solve this ODE ? tnx in advanced.

restart

U := 1:L := 10:k := 1:Dea := 0.00001:CA0 := 10:Pe := U*L/Dea:Da := k*CA0^2/Dea:

Eq1 := diff(CA(x), x, x) - Pe*diff(CA(x), x)/L = Da*L*CA(x)^2/CA0;

diff(diff(CA(x), x), x)-100000.0000*(diff(CA(x), x)) = 10000000.00*CA(x)^2

(1)

BCs := CA(0) = CA0, D(CA)(L) = 0

CA(0) = 10, (D(CA))(10) = 0

(2)

ans := dsolve([Eq1, BCs], numeric);

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

 

Download Hw.mw

Hallo every body 

i have a question How can be written this system of eqautions without the variable "t"

thanks 

restart

``

eq10 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

(1)

eq11 := alpha*X(t)

alpha*X(t)

(2)

eq12 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

(3)

eq13 := beta*Z(t)

beta*Z(t)

(4)

eq14 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

(5)

eq15 := V(t)

V(t)

(6)

eq16 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

(7)

``

Download problem.mw

how can be solved this system in maple 18

restart

fa[1] := -(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]``

-(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]

(1)

fa[2] := (1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(2)

fa[3] := -(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

-(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

(3)

fa[4] := (1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(4)

fa[5] := -(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

-(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

(5)

``

fa[6] := (11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(6)

``

``

Download system.mw

Hi!

I want to implement to attached fortran program in Maple 2015 (the procudure starts at the end of the first page). 

localmin.pdf

The code does not seem dificult, but I don't know how to interpret the instructions "go to" of fortran. Reading Maple's doc about the "goto" instruction, I don't understand how to implement it.

Can somebody help with this code, please?

Many thanks in advance for your comments.

An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. Recognizing interval graphs  is in linear time. 

Seven intervals on the real line and the corresponding seven-vertex interval graph.

 

 

IsIntervalGraph(G) (was introduced in Maple 2022) tests whether the graph G could be expressed as an interval graph for some collection of intervals. If a graph is an interval graph, then the intervals corresponding to its vertices should be given. However,  IsIntervalGraphdoes not provide such an option, which makes it impossible for me to verify the correctness of the results or see more information.

with(GraphTheory):
G:=Graph({{1,2},{1,3},{1,4}, {4,2},{4,3}});
IsIntervalGraph(G)

true

Therefore, an option like the "certificate" option in SageMath needs to be provided.

g = Graph({1: [2, 3, 4], 4: [2, 3]})
g.show()
g.is_interval()
g.is_interval(certificate=True)

(True, {1: (0, 5), 2: (4, 6), 3: (1, 3), 4: (2, 7)})

 

 

I have looked at the source code of IsIntervalGraphand it seems to be checking whether the complement graph is comparability. I am not sure if this transformation can still find the corresponding intervals.

print(IsIntervalGraph)
proc(G::GRAPHLN)::truefalse;
    local G2;
    G2 := GraphTheory:-GraphComplement(G);
    return GraphTheory:-IsComparabilityGraph(G2);
end proc

print(IsComparabilityGraph)
proc (G::GRAPHLN, { transitiveorientation::truefalse := false, 

   usecached::truefalseFAIL := FAIL }, ` $`)::truefalse; local 

   iscomparability, L, A, result, V; A := op(4, G); result := 

   FindTransitiveOrientation(A, transitiveorientation); if 

   result = NULL then false elif transitiveorientation then V 

   := op(3, G); true, GraphTheory:-Graph(V, result) else true 

   end if end proc

 

By the way, can the  "FindTransitiveOrientation "  in the function IsComparabilityGraph be used by the user?

Hello, 
I have an simple exmple of expresion : 

restart;
v1 := sin(c)*sin(a)(a - b);
                  v1 := sin(a)(-b + a) sin(c)

v2 := sin(c1)*sin(a1)(-a + b);
                 v2 := sin(a1)(-a + b) sin(c1)

sort(v1);
                      sin(c) sin(a)(a - b)

sort(v2);
                    sin(c1) sin(a1)(-a + b)


what i want  is :  sort(v2); --->     sin(c1) sin(a1)(b-a)

That mean i want the "+" sign comme alwase first

Merci

https://www.maplesoft.com/support/help/Maple/view.aspx?path=copyright lists some external packages used by Maple, but it appears that certain libraries are of outdated (albeit not obsolete) versions. For example, Maple 2023 uses FLINT 2.6.3 (released in 2020), but the newest stable version of FLINT is 2.9.0. Also, Maple 2023 uses Z3 4.5.0 (released in 2016), but the newest stable version of Z3 is 4.12.1. In addition, Maple 2023 uses GCC 10.2.0 (released in 2020), but the newest stable version of GCC is 13.1. Since they are distributed under free licenses, I can download the most recent (or even nightly) release's source code, but how can I replace the old components that Maple uses by the latest ones by myself?

Please, how do I fix this? I have

n := Vector[row]([cos(theta(x, y, t)), sin(theta(x, y, t))]);

and Tried :

sum(Multiply(n[i], n[i]), i = 1 .. 2)

But received: "Error, bad index into Vector".

Hello,

Can we impliment Artificial Neural Network for nonlinear coupled ODE equation with boundary conditions.? In maple

I wont seen any post regarding ANN in mapleprime.

Hello,

I am trying to evaluate this expression numerically or symbolically without success.

> sum(1/(4.0*n^2-4*n+4*100000000^2+1)/10^n,n=1..infinity);

Maple is having hard time to convert it to LerchPhi and even more to evalf(%);

PS : mathematica is doing it at any precision very fast or can translate this into hypegoemetric.

PS2 : I use maple 2020 on windows 10 64 bits.

I use PDsolve to solve sets of PDEs analytically.

I have had tremendous success with this but recently realized that for PDEs if you manually factor out common expressions , it makes it much easier for maple to solve it.

I was wondering if there were other "tricks" like these that I might be unaware of.

Also I found this link comparing how maple compares to mathematica in solving known PDES just in case the maple developers are interested.
Results (12000.org)

If there is a list of operations that do not work properly in 2D notation, please add the expression sequence operator `$` which does not work with strings as demonstrated in the attached worksheet . sequenceoperastionfailure.mw

It seems to work properly with numeric sequences. I only noticed this in maple 2023, but it likely applies to earlier versions as well

Hi Maple friends,

Im new to Maple and Im struggeling with a problem.

I have the numbers of a bode plot (abs and phase) and I want to fit it in an equivalent circuit.

My problem is: I firstly want to calculate the real and imaginary part of the measured impedance of the bode plot (This works so far after a few hours of trying) and then I want wo calculate the values for each equivalent circuit component. For that I need the values of the impedance calculation to further process them.

The problem is: The impedance calculation returns the values as a list (I think). So Im wondering how can I get the values out of the list? My code so far is attached below.

Thanks in advance!

PS: Im sorry for the layout of the code. Im not sure how I can format the code right.

eq1 := diff(f(x), x, x, x)+(1/2)*cos(alpha)*x*(diff(f(x), x, x))+(1/2)*sin(alpha)*f(x)*(diff(f(x), x, x)) = 0;

eq2 := diff(g(x), x, x)+diff(g(x), x)+(diff(g(x), x))*(diff(h(x), x))+cos(alpha)*x*(diff(g(x), x))+sin(alpha)*f(x)*g(x) = 0;

eq3 := diff(g(x), x, x)+diff(h(x), x, x)+1/2*(cos(alpha)*x+sin(alpha)*f(x)) = 0

ics := f(0) = 0, (D(f))(0) = 1, ((D@@2)(f))(0) = a[1], g(0) = 1, (D(g))(0) = a[2], h(0) = 1, (D(h))(0) = a[3];

First 204 205 206 207 208 209 210 Last Page 206 of 2218