Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi all guys, when i am doing error analysis but I meet with an problem. I get the trace and determinant of one matrix which consists a lot trigonometric functions. I wanna get the approximation error order of trace and determinant (Like tr=2+O(v^6),det=1+O(v^6)). But I use Taylor expansion and series, it displays can't compute the series. How to know the other ways to get the error order of it? Thanks all !phase_error_try.mw

restart

c[2] := 1/2+(1/10)*sqrt(5); c[3] := 1/2-(1/10)*sqrt(5)

1/2+(1/10)*5^(1/2)

 

1/2-(1/10)*5^(1/2)

(1)

with(LinearAlgebra)

``

A := Matrix([[0, 0, 0], [-(cos((1/10)*(5+sqrt(5))*v)-1)/v^2, 0, 0], [0, -(cos((1/10)*(-5+sqrt(5))*v)-1)/(cos((1/10)*(5+sqrt(5))*v)*v^2), 0]])

C := Matrix([0, 1/2+(1/10)*sqrt(5), 1/2-(1/10)*sqrt(5)])

Matrix(%id = 36893490461606184468)

(2)

e := Matrix([[1], [1], [1]])

Matrix(%id = 36893490461606180252)

(3)

E := Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

Matrix(%id = 36893490461606177116)

(4)

G := Matrix([[0], [10*sin((1/10)*(5+sqrt(5))*v)/((5+sqrt(5))*v)], [(10*(sin((1/10)*(-5+sqrt(5))*v)*cos((1/10)*(5+sqrt(5))*v)+sin((1/10)*(5+sqrt(5))*v)*cos((1/10)*(-5+sqrt(5))*v)-sin((1/10)*(5+sqrt(5))*v)))/(v*cos((1/10)*(5+sqrt(5))*v)*(-5+sqrt(5)))]])

b := Matrix([1/24, (-sin((1/10)*v*(-5+sqrt(5)))*v^3+12*cos((1/10)*v*(-5+sqrt(5)))*v^2+24*cos((1/10)*v*(-5+sqrt(5)))*cos(v)-24*sin((1/10)*v*(-5+sqrt(5)))*sin(v)+24*sin((1/10)*v*(-5+sqrt(5)))*v-24*cos((1/10)*v*(-5+sqrt(5))))/(24*v^3*(cos((1/10)*v*(-5+sqrt(5)))*sin((1/10)*v*(5+sqrt(5)))+sin((1/10)*v*(-5+sqrt(5)))*cos((1/10)*v*(5+sqrt(5))))), -(sin((1/10)*v*(5+sqrt(5)))*v^3+12*cos((1/10)*v*(5+sqrt(5)))*v^2+24*cos(v)*cos((1/10)*v*(5+sqrt(5)))+24*sin(v)*sin((1/10)*v*(5+sqrt(5)))-24*v*sin((1/10)*v*(5+sqrt(5)))-24*cos((1/10)*v*(5+sqrt(5))))/(24*v^3*(cos((1/10)*v*(-5+sqrt(5)))*sin((1/10)*v*(5+sqrt(5)))+sin((1/10)*v*(-5+sqrt(5)))*cos((1/10)*v*(5+sqrt(5)))))])

bp := Matrix([1/12, -(sin((1/10)*v*(-5+sqrt(5)))*v^2+12*cos((1/10)*v*(-5+sqrt(5)))*sin(v)-12*cos((1/10)*v*(-5+sqrt(5)))*v+12*cos(v)*sin((1/10)*v*(-5+sqrt(5)))-12*sin((1/10)*v*(-5+sqrt(5))))/(12*v^2*(cos((1/10)*v*(-5+sqrt(5)))*sin((1/10)*v*(5+sqrt(5)))+sin((1/10)*v*(-5+sqrt(5)))*cos((1/10)*v*(5+sqrt(5))))), -(sin((1/10)*v*(5+sqrt(5)))*v^2+12*cos(v)*sin((1/10)*v*(5+sqrt(5)))-12*cos((1/10)*v*(5+sqrt(5)))*sin(v)+12*cos((1/10)*v*(5+sqrt(5)))*v-12*sin((1/10)*v*(5+sqrt(5))))/(12*v^2*(cos((1/10)*v*(-5+sqrt(5)))*sin((1/10)*v*(5+sqrt(5)))+sin((1/10)*v*(-5+sqrt(5)))*cos((1/10)*v*(5+sqrt(5)))))])

L1 := 1/simplify(E+v^2.A); N1 := simplify(1-(1/2)*v^2+v^4*(b.L1.G.C.e)); N11 := (Typesetting[delayDotProduct](sin((1/10)*v*(5+sqrt(5)))*((v^3-24*v+24*sin(v))*sin((1/10)*v*(5+sqrt(5)))+12*cos((1/10)*v*(5+sqrt(5)))*(v^2+2*cos(v)-2))*(-5+sqrt(5)), v^2.((cos((1/10)*v*(-5+sqrt(5)))-1)*sec((1/10)*v*(5+sqrt(5)))/v^2), true)+((cos((1/10)*v*(-5+sqrt(5)))-1)*(v^3-24*v+24*sin(v))*(5+sqrt(5))*tan((1/10)*v*(5+sqrt(5)))+(96*v^2+240*cos(v)-192)*cos((1/10)*v*(-5+sqrt(5)))+2*sqrt(5)*(v^3-24*v+24*sin(v))*sin((1/10)*v*(-5+sqrt(5)))-(12*(v^2+2*cos(v)-2))*(5+sqrt(5)))*sin((1/10)*v*(5+sqrt(5)))+12*cos((1/10)*v*(5+sqrt(5)))*sin((1/10)*v*(-5+sqrt(5)))*(-6+(v^2+2*cos(v)-2)*sqrt(5)+3*v^2+10*cos(v)))/(48*sin((1/10)*v*(-5+sqrt(5)))*cos((1/10)*v*(5+sqrt(5)))+48*sin((1/10)*v*(5+sqrt(5)))*cos((1/10)*v*(-5+sqrt(5))))

Matrix(%id = 36893490461639877084)

(5)

N2 := simplify(1-v^2*b.L1.e); N22 := (Typesetting[delayDotProduct](((12*v^2+24*cos(v)-24)*cos((1/10)*(5+sqrt(5))*v)+(v^3-24*v+24*sin(v))*sin((1/10)*(5+sqrt(5))*v))*(v^2.((cos((1/10)*(5+sqrt(5))*v)-1)/v^2)+1), v^2.((cos((1/10)*(-5+sqrt(5))*v)-1)*sec((1/10)*(5+sqrt(5))*v)/v^2), true)+Typesetting[delayDotProduct]((-12*v^2-24*cos(v)+24)*cos((1/10)*(-5+sqrt(5))*v)+sin((1/10)*(-5+sqrt(5))*v)*(v^3-24*v+24*sin(v)), v^2.((cos((1/10)*(5+sqrt(5))*v)-1)/v^2), true)+((-v^3+24*v)*sin((1/10)*(-5+sqrt(5))*v)+12*v^2+24*cos(v)-24)*cos((1/10)*(5+sqrt(5))*v)+((-v^3+24*v)*cos((1/10)*(-5+sqrt(5))*v)+v^3-24*v+24*sin(v))*sin((1/10)*(5+sqrt(5))*v)+(-12*v^2-24*cos(v)+24)*cos((1/10)*(-5+sqrt(5))*v)+sin((1/10)*(-5+sqrt(5))*v)*(v^3-24*v+24*sin(v)))/(24*v*(sin((1/10)*(-5+sqrt(5))*v)*cos((1/10)*(5+sqrt(5))*v)+sin((1/10)*(5+sqrt(5))*v)*cos((1/10)*(-5+sqrt(5))*v)))

Matrix(%id = 36893490461606200972)

(6)

N3 := simplify(-v^2+v^4*bp.L1.G.C.e); N33 := v*(Typesetting[delayDotProduct](((v^2+12*cos(v)-12)*sin((1/10)*(5+sqrt(5))*v)+12*cos((1/10)*(5+sqrt(5))*v)*(v-sin(v)))*sin((1/10)*(5+sqrt(5))*v)*(-5+sqrt(5)), v^2.((cos((1/10)*(-5+sqrt(5))*v)-1)*sec((1/10)*(5+sqrt(5))*v)/v^2), true)+((cos((1/10)*(-5+sqrt(5))*v)-1)*(v^2+12*cos(v)-12)*(5+sqrt(5))*tan((1/10)*(5+sqrt(5))*v)+(96*v-120*sin(v))*cos((1/10)*(-5+sqrt(5))*v)+2*sqrt(5)*(v^2+12*cos(v)-12)*sin((1/10)*(-5+sqrt(5))*v)-(12*(5+sqrt(5)))*(v-sin(v)))*sin((1/10)*(5+sqrt(5))*v)+12*cos((1/10)*(5+sqrt(5))*v)*sin((1/10)*(-5+sqrt(5))*v)*((v-sin(v))*sqrt(5)+3*v-5*sin(v)))/(24*cos((1/10)*(5+sqrt(5))*v)*sin((1/10)*(-5+sqrt(5))*v)+24*sin((1/10)*(5+sqrt(5))*v)*cos((1/10)*(-5+sqrt(5))*v))

Matrix(%id = 36893490461733603676)

(7)

N4 := simplify(1-v^2*bp.L1.e); N44 := (Typesetting[delayDotProduct](((v^2+12*cos(v)-12)*sin((1/10)*(5+sqrt(5))*v)+12*cos((1/10)*(5+sqrt(5))*v)*(v-sin(v)))*(v^2.((cos((1/10)*(5+sqrt(5))*v)-1)/v^2)+1), v^2.((cos((1/10)*(-5+sqrt(5))*v)-1)*sec((1/10)*(5+sqrt(5))*v)/v^2), true)+Typesetting[delayDotProduct]((v^2+12*cos(v)-12)*sin((1/10)*(-5+sqrt(5))*v)-12*cos((1/10)*(-5+sqrt(5))*v)*(v-sin(v)), v^2.((cos((1/10)*(5+sqrt(5))*v)-1)/v^2), true)+(-cos((1/10)*(-5+sqrt(5))*v)*v^2+v^2+12*cos(v)+12*cos((1/10)*(-5+sqrt(5))*v)-12)*sin((1/10)*(5+sqrt(5))*v)+(-sin((1/10)*(-5+sqrt(5))*v)*v^2+12*v-12*sin(v)+12*sin((1/10)*(-5+sqrt(5))*v))*cos((1/10)*(5+sqrt(5))*v)+(v^2+12*cos(v)-12)*sin((1/10)*(-5+sqrt(5))*v)-12*cos((1/10)*(-5+sqrt(5))*v)*(v-sin(v)))/(12*sin((1/10)*(-5+sqrt(5))*v)*cos((1/10)*(5+sqrt(5))*v)+12*sin((1/10)*(5+sqrt(5))*v)*cos((1/10)*(-5+sqrt(5))*v))

Matrix(%id = 36893490461606185188)

(8)

tr := N11+N44

det := N11*N44-N22*N33

expand(det, v, 10)

Warning,  computation interrupted

 

` `

(9)

NULL

NULL


 

Download phase_error_try.mw

pansion)

I have a command called Dual in a SubPackage. RationalTrigonometry:-UHG:-Dual(..). I cannot get the hyperlink from the overview page to work.i.e RationalTrigonometry,UHG,Dual If I use Dual on its own it finds another Maple command to do with boolean logic. What syntax should I use here? I have used RationalTrigonometry,Spread without a problem to avoid another Maple command.

 

Good afternoon, please how to factor the following polynomial so that it gives me the following result:

x^10/36 - 4/25*y^24*z^8 = (x^5/6 - 2/5*y^12*z^4)*(x^5/6 + 2/5*y^12*z^4)

I added radnormal(sol) to my solution to workaround bug in solve hanging

But now new problem showed up. sometimes radnormal gives internal error when there are _Z's in solution.

radnormal(sol);
Error, (in RootOf) _Z occurs but is not the dependent variable
 

Attached worksheet. Sorry that the solution is very large and has lots of _Zs and RootOf, but this is the first one I can see so far in the log file of my program running, so I left it as is:

Should I check in my code that solution does not contain _Z before calling radnormal on it?  Is this a bug or known limitation?
 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1767 and is the same as the version installed in this computer, created 2024, June 28, 12:19 hours Pacific Time.`

sol:=1/6*(-a^3 - 3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 + 6*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a + 8*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 + 3*sqrt(3)*sqrt(-RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*(RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^4 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a^3 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3*a^2 + 4*a^3 + 12*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 - 24*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a - 32*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 - 108*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))) + 54*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))^(1/3) + 1/6*(4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2 + 2*a*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2) + a^2)/(-a^3 - 3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 + 6*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a + 8*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 + 3*sqrt(3)*sqrt(-RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*(RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^4 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a^3 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3*a^2 + 4*a^3 + 12*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 - 24*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a - 32*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 - 108*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))) + 54*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))^(1/3) - 1/6*a + 1/3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2):

radnormal(sol);

Error, (in RootOf) _Z occurs but is not the dependent variable

 


 

Download bug_Z.mw

I have had this a few times this week since updating to 2024.1 on Windows 10.

I get sudden freezes in a worksheet. The !!! button greys out. The ! button is ok, so the worksheet can be run by using ctrl A and click !

Has anyone else experienced this?

I was about to verify two solutions of dsolve from here but could not find an agreement for negative values. This makes me wonder if all values are computed.

There is also a different behaviour that I do not understand when allvalues is given a RootOf expression or an equation containing a RootOf expression.
 

dsolve without method

ode:=diff(y(x), x) = (3*x - y(x) + 1)/(3*y(x) - x + 5);
ic:=y(0)=0;
dsolve({ode,ic});
plot(rhs(%),x=-10..10,numpoints=10);
evalf(subs(x=3,%%));
evalf(subs(x=-3,%%%));

diff(y(x), x) = (3*x-y(x)+1)/(3*y(x)-x+5)

 

y(0) = 0

 

y(x) = -(-(1/36)*(x+1)^2*((-324+12*(96*x^3+288*x^2+288*x+825)^(1/2))^(2/3)-24*x-24)^2/(-324+12*(96*x^3+288*x^2+288*x+825)^(1/2))^(2/3)-x^3-x^2+x+1)/(x+1)^2

 

 

y(3) = 2.135964164

 

y(-3) = -2.302775638+0.4883358175e-9*I

(1)

dsolve with a particular method

sol:=dsolve([ode,ic],[dAlembert]);
odetest(sol,[ode,ic]);

y(x) = RootOf(-6*((x+_Z+3)/(5+3*_Z-x))^(2/3)*(-4*(-x+_Z+1)/(5+3*_Z-x))^(1/3)*_Z+2*((x+_Z+3)/(5+3*_Z-x))^(2/3)*(-4*(-x+_Z+1)/(5+3*_Z-x))^(1/3)*x+2*(-4)^(1/3)*3^(2/3)-10*((x+_Z+3)/(5+3*_Z-x))^(2/3)*(-4*(-x+_Z+1)/(5+3*_Z-x))^(1/3))

 

[0, 0]

(2)

Since allvalues fails on this expression for real valued x, rational and integer values are tried for punctual comaprision

subs(x=3,sol);
allvalues(%);
evalf(%)

y(3) = RootOf(-6*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)*_Z-4*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)+2*(-4)^(1/3)*3^(2/3))

 

y(3) = (6873/256)*(-(4/6873)*(20994724+82476*6873^(1/2))^(1/3)-(128/3)/(20994724+82476*6873^(1/2))^(1/3)+1/3-((1/2)*I)*3^(1/2)*((8/6873)*(20994724+82476*6873^(1/2))^(1/3)-(256/3)/(20994724+82476*6873^(1/2))^(1/3)))^2+(1/96)*(20994724+82476*6873^(1/2))^(1/3)+(2291/3)/(20994724+82476*6873^(1/2))^(1/3)-8947/768+((2291/256)*I)*3^(1/2)*((8/6873)*(20994724+82476*6873^(1/2))^(1/3)-(256/3)/(20994724+82476*6873^(1/2))^(1/3)), y(3) = (6873/256)*((8/6873)*(20994724+82476*6873^(1/2))^(1/3)+(256/3)/(20994724+82476*6873^(1/2))^(1/3)+1/3)^2-(1/48)*(20994724+82476*6873^(1/2))^(1/3)-(4582/3)/(20994724+82476*6873^(1/2))^(1/3)-8947/768, y(3) = (6873/256)*((8/6873)*(20994724+82476*6873^(1/2))^(1/3)+(256/3)/(20994724+82476*6873^(1/2))^(1/3)+1/3)^2-(1/48)*(20994724+82476*6873^(1/2))^(1/3)-(4582/3)/(20994724+82476*6873^(1/2))^(1/3)-8947/768

 

y(3) = -6.067982077+1.049560864*I, y(3) = 2.13596417, y(3) = 2.13596417

(3)

Two roots match the dsolve solution without method. However doing the same only on the right hand side produces different output. For some reason allvalues produces 3 RootOf expressions with a numerical root selector.

subs(x=3,rhs(sol));
allvalues(%);
evalf(%)

RootOf(-6*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)*_Z-4*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)+2*(-4)^(1/3)*3^(2/3))

 

RootOf((3*I)*3^(1/6)*2^(2/3)+2^(2/3)*3^(2/3)-6*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)*_Z-4*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3), -6.067982082+1.049560860*I), RootOf((3*I)*3^(1/6)*2^(2/3)+2^(2/3)*3^(2/3)-6*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)*_Z-4*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3), 2.135964164), RootOf((3*I)*3^(1/6)*2^(2/3)+2^(2/3)*3^(2/3)-6*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3)*_Z-4*((6+_Z)/(2+3*_Z))^(2/3)*(-4*(-2+_Z)/(2+3*_Z))^(1/3), 2.135964164-0.*I)

 

-6.067982082+1.049560860*I, 2.135964164, -6.067982082+1.049560860*I

(4)

Why this change?
Now the same with a negative value. Now the root does not match the solution of the dsolve call without method.

subs(x=-3,sol);
allvalues(%);
evalf(%)

y(-3) = RootOf(-6*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3)*_Z-16*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3)+2*(-4)^(1/3)*3^(2/3))

 

y(-3) = -1/2+(1/2)*13^(1/2)

 

y(-3) = 1.302775638

(5)

subs(x = -3, rhs(sol));
allvalues(%);
evalf(%);

RootOf(-6*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3)*_Z-16*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3)+2*(-4)^(1/3)*3^(2/3))

 

RootOf((3*I)*3^(1/6)*2^(2/3)-6*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3)*_Z+2^(2/3)*3^(2/3)-16*(_Z/(8+3*_Z))^(2/3)*(-4*(4+_Z)/(8+3*_Z))^(1/3), 1.302775638+0.*I)

 

1.302775638

(6)

NULL

 

NULL


 

Download allvalues.mw

I gave up trying to figure out why Maple sometimes generates solutions from my code that look different, running the same exact code. I know Maple is not deterministic and this can happen sometimes for reasons I will never know.

The following two solutions are the same, it just sometimes Maple shuffles terms a little around. For example SQRT(6) comes out SQRT(2)*SQRT(3).  I have no idea why this happens. It could be how memory inside Maple happened to be at the time and what happened before.

But my question is the following. Here is one ode, and two solutions that are exactly the same. I called one good_sol and one bad_sol.

If I do simplify(bad_sol - good_sol) I get  0 = 0 but here is the problem. When calling odetest on the good_sol, Maple returns 0 instantly,  But on the bad_sol it just hangs.

Even though the two solution are exactly the same. i.e. Mathematically the same.  

I'd like to know why does this happen? And if there is a permanent fix I could always use.

The following worksheet shows this problem.

After much trial and error, I found that if I do radnormal(bad_sol) then now odetest returns zero right away and the hang is gone!

I am just trying to understand why. And why odetest then itself does not use radnormal if this makes it work better?

Do I need to call randormal on every solution before calling odetest then? Will calling randormal on the final solution have any bad side effects on other computation after that?  It should not I would think.

This is all done in code without looking at the screen and having to decide. So I would need a solution that will work for all cases. But for now, I will change my code and add randormal to all solutions and see what happens.

Using 2024.1 on windows.   May be Maple behaves different on macOS, I do not know.

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1767 and is the same as the version installed in this computer, created 2024, June 28, 12:19 hours Pacific Time.`

restart;

ode:=4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3 = 0;

4*x*(diff(y(x), x))^2-3*y(x)*(diff(y(x), x))+3 = 0

bad_sol:=ln(x) - c__1 - 1/2*ln((y(x)^2 - 6*x)/x) - 3*ln((sqrt(3)*y(x) + sqrt((3*y(x)^2 - 16*x)/x)*sqrt(x))/sqrt(x)) + 1/2*arctanh(1/2*(-16*sqrt(x) + 3*y(x)*sqrt(2)*sqrt(3))*sqrt(2)/(sqrt((3*y(x)^2 - 16*x)/x)*sqrt(x))) + 1/2*arctanh(1/2*(16*sqrt(x) + 3*y(x)*sqrt(2)*sqrt(3))*sqrt(2)/(sqrt((3*y(x)^2 - 16*x)/x)*sqrt(x))) = 0;

ln(x)-c__1-(1/2)*ln((y(x)^2-6*x)/x)-3*ln((3^(1/2)*y(x)+((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2))/x^(1/2))+(1/2)*arctanh((1/2)*(-16*x^(1/2)+3*y(x)*2^(1/2)*3^(1/2))*2^(1/2)/(((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2)))+(1/2)*arctanh((1/2)*(16*x^(1/2)+3*y(x)*2^(1/2)*3^(1/2))*2^(1/2)/(((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2))) = 0

good_sol:=ln(x) - c__1 - 1/2*ln((y(x)^2 - 6*x)/x) - 3*ln((sqrt(3)*y(x) + sqrt(x)*sqrt((3*y(x)^2 - 16*x)/x))/sqrt(x)) + 1/12*sqrt(3)*sqrt(6)*sqrt(2)*arctanh(1/2*(-16*sqrt(x) + 3*y(x)*sqrt(6))*sqrt(2)/(sqrt(x)*sqrt((3*y(x)^2 - 16*x)/x))) + 1/12*sqrt(3)*arctanh(1/2*(16*sqrt(x) + 3*y(x)*sqrt(6))*sqrt(2)/(sqrt(x)*sqrt((3*y(x)^2 - 16*x)/x)))*sqrt(6)*sqrt(2) = 0;
 

ln(x)-c__1-(1/2)*ln((y(x)^2-6*x)/x)-3*ln((3^(1/2)*y(x)+((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2))/x^(1/2))+(1/12)*3^(1/2)*6^(1/2)*2^(1/2)*arctanh((1/2)*(-16*x^(1/2)+3*y(x)*6^(1/2))*2^(1/2)/(((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2)))+(1/12)*3^(1/2)*arctanh((1/2)*(16*x^(1/2)+3*y(x)*6^(1/2))*2^(1/2)/(((3*y(x)^2-16*x)/x)^(1/2)*x^(1/2)))*6^(1/2)*2^(1/2) = 0

simplify(bad_sol-good_sol)

0 = 0

odetest(good_sol,ode); #instant answer

0

odetest(bad_sol,ode); #hangs

Warning,  computation interrupted

 

radnormal(bad_sol)

ln(x)-c__1-(1/2)*ln((y(x)^2-6*x)/x)-3*ln((y(x)*x^(1/2)*3^(1/2)+x*(-(-3*y(x)^2+16*x)/x)^(1/2))/x)+(1/2)*arctanh((-(-3*y(x)^2+16*x)/x)^(1/2)*(3*y(x)*x^(1/2)*3^(1/2)-8*2^(1/2)*x)/(3*y(x)^2-16*x))+(1/2)*arctanh((-(-3*y(x)^2+16*x)/x)^(1/2)*(3*y(x)*x^(1/2)*3^(1/2)+8*2^(1/2)*x)/(3*y(x)^2-16*x)) = 0

odetest(%,ode); #instant answer

0

 


 

Download why_same_sol_hangs_july_7_2024.mw

 

Why  does it appear  floating-point values?

restart;
with(plots);
with(geometry);
_EnvHorizontalName := 'x';
_EnvVerticalName := 'y';
xA := 5;
yA := 0;
point(A, xA, yA);
xB := 5;
yB := -7;
point(B, xB, yB);
midpoint(C, A, B);
segment(sg1, A, B);
xP := -12;
yP := 0;
point(P, xP, yP);
PerpenBisector(L, C, P);
line(YYp, y = yB);
line(XXp, y = 0);
intersection(M, L, YYp);
line(PM, [P, M]);
projection(H, C, PM);
triangle(CMP, [C, M, P]);
triangle(ABH, [A, B, H]);
distance(B, H);
circle(cir, [B, 7]);
display(textplot([[coordinates(A)[], "A"], [coordinates(B)[], "B "], [coordinates(C)[], "C"], [coordinates(M)[], "M"], [coordinates(H)[], "H"], [coordinates(P)[], "P"]], align = {"above", 'right'}),
draw([YYp(color = red), XXp(color = black), PM(color = green), L(color = green), sg1(color = black), cir(color = magenta), P(color = black, symbol = solidcircle, symbolsize = 10), M(color = black, symbol = solidcircle, symbolsize = 10), H(color = black, symbol = solidcircle, symbolsize = 10), A(color = blue, symbol = solidcircle, symbolsize = 10), B(color = blue, symbol = solidcircle, symbolsize = 10), CMP(color = blue, filled = true, transparency = 0.8), ABH(color = red, filled = true, transparency = 0.8), C(color = blue, symbol = solidcircle, symbolsize = 10)]),
axes = none, view = [-15 .. 14, -15 .. 3]);
I want to change this figure when xP varies from -12 to 12; Is it possible to use Explore or animate ? Thank you.

This is a reminder that presentation applications for the Maple Conference are due July 17, 2024.

The conference is a a free virtual event and will be held on October 24 and 25, 2024.

We are inviting submissions of presentation proposals on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. We also encourage submission of proposals related to Maple Learn. You can find more information about the themes of the conference and how to submit a presentation proposal at the Call for Participation page.

I encourage all of you here in the Maple Primes community to consider joining us for this event, whether as a presenter or an attendee!

Kaska Kowalska
Contributed Program Co-Chair

Is there a way to apply Intc() and Fundiff() in spherical coordinates? If I initialize a spherical coordinate system X and then want to calculate the effect with Intc(), r, theta phi and t are integrated from -inf to inf but  thtea:(0, pi) phi:(0, 2Pi). I would also need a second spherical coordinate system Y, if I have understood Fundiff() correctly, but how can I define this Coordinates(X = spherical, Y = spherical) does not work.  

I would like to vary my Lagrange density (16) with respect to f_A(r). Where r is the radial coordinate of the spherical coordinate system.

YANG-MILLS-Theorie.mw

Dear maple user,for defining the piecewise function please rectify this

h:z-> piecewise(do+Lo<z<do+4*Lo+0.3,    1-cos(2*pi*(z-L), other wise 1)

Hi all guys, I don't know how to simplify this easy expression? I have tried simplify command, and expand command, no use. Welcome to answer and thank you!

 

y1(x) = 2*sin(x)-sin(2*x)+cos(2*x); y2(x) = 4*sin(x)+sin(2*x)-cos(2*x); diff(y1(x), x); diff(y1(x), x); simplify*(1/2*((diff(y1(x), x))^2+(diff(y2(x), x))^2)+1/2*(3*y1(x)^2-y1(x)*y2(x)+y2(x)^2))

simplify*((1/2)*(diff(y1(x), x))^2+(1/2)*(diff(y2(x), x))^2+(3/2)*y1(x)^2-(1/2)*y1(x)*y2(x)+(1/2)*y2(x)^2)

(1)

 

Download simplify_expression.mw

I have four symmetries as

1] \frac{\partial}{\partial t)

2] \frac{\partial}{\partial x)

3] \frac{\partial}{\partial y)

4] 2t \frac{\partial}{\partial t)+x\frac{\partial}{\partial x)+y\frac{\partial}{\partial y)-2u\frac{\partial}{\partial u)

Kindly help me out to find 1D optimal system with structural constants.

I will be greatful.

There exists a new (?) checkbox  in the Interface tab of the Options dialog: 

But I cannot find any find any explanation about it in the corresponding help page. What is the purpose of this feature? 

First 92 93 94 95 96 97 98 Last Page 94 of 2216