Question: How to scale plots, to distinguish multiple curves?

In the current graph, the three curves appear close together and are hard to distinguish because of a scaling issue. How can we adjust the scale so that each line is clearly visible and separate?

restart

L1 := ((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))+(.9*(.5+(.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))+.1408958333+(0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48)+(.6200396825*(-.339960-(.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)); L2 := ((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))+.1345516666+(0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48)+(.6200396825*(-.364344-(.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)); L3 := ((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))+.1344738889+(0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))^2+(-.1949156746-(.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-(.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48)

((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))+.9*(.5+.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))+.1408958333+0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))^2-.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)+.6200396825*(-.339960-.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))+.1345516666+0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))^2-.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)+.6200396825*(-.364344-.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))+.1344738889+0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))^2+(-.1949156746-.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)

(1)

G2 := plot([L1, L2, L3], rho0 = 0 .. .8, color = ["#00FF00", "#00BC00", "#008000"], labels = [typeset(Typesetting:-mo("ρ", mathvariant = "bold"), "\n"), typeset("\n", Typesetting:-mo("Retailer profit", mathvariant = "bold", mathcolor = "black"))], labeldirections = ["horizontal", "vertical"], legend = [`#msubsup(mi("Pi"),mi("r"),mn("W"));`, `#msubsup(mi("Pi"),mi("r"),mn("D"));`, `#msubsup(mi("Pi"),mi("r"),mn("S"));`], axis[2] = [color = "#006000"])

 
 

``

Download Q_SEPERATE.mw

Please Wait...