MaplePrimes Questions

I created a temporary account because I could not log in after the recent shutdown of MaplePrimes.

The login issue is resolved and I do not need the temporary account any longer.

How can I delete the temporary account. Edit: deletion is not the primary objective. Making the account inactive would do as well.

I am probably overlooking this option

I intend to use LinearAlgebra package to do some calculations. I want to compute the basis for large Matrices. My discovery is that the linalg[kernel] command, which the document claims is deprecated, could do such computation significantly faster than the LinearAlgebra[NullSpace] command. For a 200 x 500 large random matrix, linalg[kernel] clocked 33 secs, while the LinearAlgebra[NullSpace] takes 200 secs, as shown in the worksheet NullSpace_vs_kernel.mw.

I wanna know what makes the difference, or is there a misuse for LinearAlgebra[NullSpace].


For years I used to use 2 accounts when I am home

  • one under Firefox corresponds to my profesionnal account, which I can access to from my office oror home (and which is the one I use here),
  • the other one under Safari is my "personal" account; (login mmcdara)  which I cannot access to from my office because of security rules.
     

To separate the managing of professional and personal accounts I always used the former under Firefox and the latter under Safari.
Since the outage my personal account is no longer accessible, neither from Safari nor Firefox.

I created this account about eight years ago using the adress michael.mcdara@gmail.com and during all these years the connexion to Mapleprimes from Safari was  "automatic" in the sense that I was always logged in as mmcdara. Even after having quit Safari or shut down my computer, I was logged in as mmcdara as soon as I reopened Mapleprimes (a curiosity, for quitting Firefox being logged in as sand15 and openening it again required my relogging as sand15).

This still was the case early this morning (I sent replied to andiguy) but not one hour after.
Indeed Mapleprimes asked me my mail adress, that I knew, and my password, that I have forgot, of course.

Eight years ago the double authentification was not mandatory and so Gmail has purely and simply made the adress michael.mcdara@gmail.com inaccesible in between (I used it only with Mapleprimes, thus no real need to look at it regularly nor to bother with this double authentification stuff... at least I thought).
So any attempt to ask for a reinitialization of my password is a dead end for I cannot access the address michael.mcdara@gmail.com


My main activity on Mapleprimes is realized using my mmcdara account.
What bothers me the most  (loosing my mmcdara account would be unplesant but I can survive this) is that I was working since several months on two or three posts and that I can't anymore access the corresponding drafts (not a deadly situation I cannot survive to neither).

Do you have any idea about how to solve these issues?
I would satisfy myself recovering the two or three post drafts I was working on.

Thanks in advance
 

Hi everyone,

I am trying to solve a system of coupled ODEs numerically. My worksheet runs and produces results, but when I look at the graphs, it seems that the boundary conditions are not being satisfied correctly. Could anyone help me identify the issue and  fix my implementation?

BCs_help.mw

I need to export an image in high resolution in JPEG, JPG, and PDF formats. Right now, I'm using screenshots, which results in low clarity. Could you please help me with the correct syntax to generate a high-resolution, downloadable image in these formats? I'm attaching the file below:

q_new.mw

Hi

I'm trying to duplicate this graph in Maple. Any suggestions on how to place the textplot labels (n=0, n=1, etc.) to the right of 0.8, just like in the original graph?

how to place the textplot labels (n=0, n=1, etc.)

Thanks

S7MAA_Dveloppement_Limit.mw

I came across this

Can these library components be used to perform FFT on signals in MapleSim?

Any guidance on FFT and MapleSim appart from exporting to Maple would be very much appreciated.

(Easy) frequency analysis is among the top features I am missing in MapleSim.

I constructed a density function, and I am certain it shows me what I want.  The problem I am having is parsing the Elliptic functions. Is there a way to "get rid" of the ones I don't want or need.

I generated a plot of the function -- the plot tells me what I expected based on simulation. I need to know if there is a way to express the density function (y) as a function of t and without the elliptic functions..  Even a numerical solution would be fine.

I assume the denomenator term is correct. I also assume that I don't need complex values. My input file is below.

Basics.mw

I have set a style for my Maple 2023 sheets

2D-Input, Font: Times Roman 28 pt.

In the the past when I reopened the file, it would come back with the same 2D input font.

Starting today, when I reopen the file, the whole sheet is changed to. 

Maple-Input, Font: Courier New 12 pt. 

You can see it flash on the original stylem then reset to the Courier font. 

I tried resetting the Display options, but no luck.

Any thoughts?

I tried to open some existing worksheets. 

If I enter, e.g.,r f:=x, I get 

"Typesetting:-mprintslash([(f := x)],[x])"

I cannot change the style set. 

It seems that when I open old worksheets, some of the text imput, e.g., processes, is lost.

I upgraded to Maple 2025, but have the same issues. 

Any suggestions?

The two profit functions intersect at a certain point, but the graph is not clearly visible in the range of Cb​ from 30,000 to around 60,000. How can I adjust the plot to make this range more visible? What can i do such that two lines are seen distinct in that area?

Sheet:Q_12.mw

I'm solving the 1D heat equation using two different approaches, both involving Fourier transforms.

  1. First Attempt: Using pdsolve the Fourier method. This code either takes a very long time or doesn't produce a plot at all.
  2. Second Attempt: Manual Fourier transform. This one works fine and quickly plots the result.

Why does the first version using pdsolve(..., method = Fourier) result in slow or non-responsive behaviorplot3d, while the second version (manual transform) runs efficiently? Is the pdsolve result too symbolic or unevaluated for plotting? How can I make the first approach plot correctly?

Thanks for any insights!

ft1.mw

In this system of differential equation i have two questions
1- i want find thus parameter containing in S[1] and S[2] to be 1 or -1 how find find all other parameter inside thus for finding that?

2-when equalibroium point are complex the conservative quantity not shown thus point ? why is not shown in  diagram there is trick which i don't know How i can show in global? 
L1.mw

finding each parameter to set the point be one like this picture

 

 

Hi. how can i plot this function (FF) ?

restart

 

NULL

FF := evalf((5.00000*10^(-1))*sqrt(2.00000*10^0)*sqrt((-(2.86309*10^0)*P1-(1.66947*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.66947*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(4.83452*10^3+I*(9.71800*10^2))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(4.83452*10^3+I*(9.71800*10^2))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(4.83452*10^3-I*(9.71800*10^2))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.00000*10^(-200)-I*(1.00000*10^(-403)))*P1+(-7.80021*10^(-2750)-I*(3.11940*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(-(1.53846*10^5)*(-(6.46014*10^(-7))*P1+(-3.73229*10^(-7)-I*(7.69863*10^(-210)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.53846*10^5)*(-(1.51448*10^(-119))*P1+(-8.74976*10^(-120)-I*(1.80482*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(2.51785*10^0)*P1+(-6.25305*10^3+I*(3.19024*10^3))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-6.25305*10^3+I*(3.19024*10^3))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-6.25305*10^3-I*(3.19024*10^3))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(5.94458*10^(-2750)+I*(1.03769*10^(-2749)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-4.53057*10^(-1)-I*(9.34527*10^(-204)))*P1+(4.43548*10^4)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)+(4.43548*10^4)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(-1.53846*10^5-I*(3.36949*10^(-198)))*((-1.28153*10^(-7)-I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.20721*10^(-220)+I*(7.88859*10^(-221)))*((-4.28969*10^203+I*(2.49597*10^202))*P1+(6.35642*10^204)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((3.38241*10^(-22)+I*(3.05893*10^(-21)))*P1-(4.97664*10^(-21))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((-1.28153*10^(-7)+I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(-(1.53846*10^5)*(-(6.46014*10^(-7))*P1+(-3.73229*10^(-7)-I*(7.69863*10^(-210)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.53846*10^5)*(-(1.51448*10^(-119))*P1+(-8.74976*10^(-120)-I*(1.80482*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)-(3.45235*10^(-1))*P1-(1.22592*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)-(1.22592*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(-1.41853*10^3+I*(4.16204*10^3))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.41853*10^3+I*(4.16204*10^3))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5-I*(3.36949*10^(-198)))*((-1.28153*10^(-7)-I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.41853*10^3-I*(4.16204*10^3))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((-1.28153*10^(-7)+I*(3.64224*10^(-7)))*P1+(1.90328*10^(-6))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.53846*10^5+I*(3.36949*10^(-198)))*((3.38241*10^(-22)+I*(3.05893*10^(-21)))*P1-(4.97664*10^(-21))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.20721*10^(-220)+I*(7.88859*10^(-221)))*((-4.28969*10^203+I*(2.49597*10^202))*P1+(6.35642*10^204)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-4.53057*10^(-1)-I*(9.34527*10^(-204)))*P1+(-1.85563*10^(-2750)+I*(7.25748*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0)+(6.00000*10^0)*(-(2.25126*10^5)*(-(1.78626*10^(-6))*P1+(-1.03200*10^(-6)-I*(2.12871*10^(-209)))*P1)*exp(-(3.24175*10^(-1))*x)+(2.25126*10^5)*(-(4.18761*10^(-119))*P1+(-2.41935*10^(-119)-I*(4.99043*10^(-322)))*P1)*exp((3.24175*10^(-1))*x)+(1.79100*10^3-I*(5.22310*10^2))*((-1.86327*10^(-5)+I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)-I*(3.63246*10^(-2)))*x)+(-1.79100*10^3+I*(5.22310*10^2))*((4.91783*10^(-20)+I*(4.44752*10^(-19)))*P1-(7.23576*10^(-19))*P1)*exp((4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(1.79100*10^3+I*(5.22310*10^2))*((-1.86327*10^(-5)-I*(5.29561*10^(-5)))*P1+(2.76726*10^(-4))*P1)*exp((-4.17729*10^(-2)+I*(3.63246*10^(-2)))*x)+(2.06743*10^(-2750)+I*(2.41391*10^(-2750)))*((-3.43175*10^2733+I*(1.99678*10^2732))*P1+(5.08514*10^2734)*P1)*exp((4.17729*10^(-2)-I*(3.63246*10^(-2)))*x))^(2.00000*10^0))-250)

.7071067810*((-2.86309*P1-166947.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)-166947.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(4834.52000+971.80000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(4834.52000+971.80000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(4834.52000-971.80000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-0.1000000000e-199-0.1000000000e-402*I)*P1+(-0.7800210000e-2749-0.3119400000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+(-153846.0000*(-0.6460140000e-6*P1+(-0.3732290000e-6-0.7698630000e-209*I)*P1)*exp(-.3241750000*x)-153846.0000*(-0.1514480000e-118*P1+(-0.8749760000e-119-0.1804820000e-321*I)*P1)*exp(.3241750000*x)+2.51785*P1+(-6253.05000+3190.24000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-6253.05000+3190.24000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-6253.05000-3190.24000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.5944580000e-2749+0.1037690000e-2748*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-.4530570000-0.9345270000e-203*I)*P1+44354.80000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)+44354.80000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(-153846.0000-0.3369490000e-197*I)*((-0.1281530000e-6-0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.1207210000e-219+0.7888590000e-220*I)*((-0.4289690000e204+0.2495970000e203*I)*P1+0.6356420000e205*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((0.3382410000e-21+0.3058930000e-20*I)*P1-0.4976640000e-20*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((-0.1281530000e-6+0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+(-153846.0000*(-0.6460140000e-6*P1+(-0.3732290000e-6-0.7698630000e-209*I)*P1)*exp(-.3241750000*x)-153846.0000*(-0.1514480000e-118*P1+(-0.8749760000e-119-0.1804820000e-321*I)*P1)*exp(.3241750000*x)-.3452350000*P1-122592.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)-122592.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(-1418.53000+4162.04000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(-1418.53000+4162.04000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000-0.3369490000e-197*I)*((-0.1281530000e-6-0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-1418.53000-4162.04000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((-0.1281530000e-6+0.3642240000e-6*I)*P1+0.1903280000e-5*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-153846.0000+0.3369490000e-197*I)*((0.3382410000e-21+0.3058930000e-20*I)*P1-0.4976640000e-20*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(0.1207210000e-219+0.7888590000e-220*I)*((-0.4289690000e204+0.2495970000e203*I)*P1+0.6356420000e205*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x)+(-.4530570000-0.9345270000e-203*I)*P1+(-0.1855630000e-2749+0.7257480000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000+6.00000*(-225126.0000*(-0.1786260000e-5*P1+(-0.1032000000e-5-0.2128710000e-208*I)*P1)*exp(-.3241750000*x)+225126.0000*(-0.4187610000e-118*P1+(-0.2419350000e-118-0.4990430000e-321*I)*P1)*exp(.3241750000*x)+(1791.00000-522.31000*I)*((-0.1863270000e-4+0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1-0.3632460000e-1*I)*x)+(-1791.00000+522.31000*I)*((0.4917830000e-19+0.4447520000e-18*I)*P1-0.7235760000e-18*P1)*exp((0.4177290000e-1+0.3632460000e-1*I)*x)+(1791.00000+522.31000*I)*((-0.1863270000e-4-0.5295610000e-4*I)*P1+0.2767260000e-3*P1)*exp((-0.4177290000e-1+0.3632460000e-1*I)*x)+(0.2067430000e-2749+0.2413910000e-2749*I)*((-0.3431750000e2734+0.1996780000e2733*I)*P1+0.5085140000e2735*P1)*exp((0.4177290000e-1-0.3632460000e-1*I)*x))^2.00000)^(1/2)-250.

(1)

NULL

with(plots, implicitplot, complexplot)

[implicitplot, complexplot]

(2)

 

implicitplot(FF, x = 0 .. 200, P1 = 0 .. 800)

 

NULL

 

NULL

Download PLOT11.mw

In the attached file, I would like to determine the real part of the complex term2. I'm asking for your help.test.mw

restart

term1 := exp(I*t/2^k)

exp(I*t/2^k)

(1)

term2 := product(term1, k = 1 .. n)

(cos(2*t*(1/2)^(n+1))-I*sin(2*t*(1/2)^(n+1)))/(cos(t)-I*sin(t))

(2)

``

Download test.mw

1 2 3 4 5 6 7 Last Page 3 of 2426