Kitonum

21530 Reputation

26 Badges

17 years, 84 days

MaplePrimes Activity


These are answers submitted by Kitonum

1. Your code is correct and answers the point (b). Just add the option  view=[-5..5, -0.5..2.5]  to your code for more visibility.

2. For (a) just replace the option  output=plot  by  output=line  in your code .

3. The code of the animation for  (c) :

restart;
with(Student[Calculus1]):
T:=proc(x0)
local A, B, C, f, k;
uses plots, plottools;
f:=x->2/(1+exp(-x));
k:=D(f)(x0);
A:=line([x0-5/sqrt(k^2+1),f(x0)-5*k/sqrt(k^2+1)], [x0+5/sqrt(k^2+1),f(x0)+5*k/sqrt(k^2+1)], color=red);
B:=plot(f(x), x=-10..10,-2..3.5, color=blue);
C:=disk([x0,f(x0)], 0.08, color=red);
display(A,B,C, scaling=constrained);
end proc:

plots:-animate(T,[x], x=-5..5, frames=90, size=[1000,300], paraminfo=false);

Output:

plots:-display(plottools:-circle());
plot([cos(t),sin(t), t=0..2*Pi]);
plots:-implicitplot(x^2+y^2=1, x=-1..1,y=-1..1);


More 3 ways:

plot(1, phi=0..2*Pi, coords=polar);
plot([sqrt(1-x^2),-sqrt(1-x^2)], x=-1..1, color=black);
geometry:-draw(geometry:-circle(c,[geometry:-point(A,0,0),1]));


Edit.
 

f:=sqrt(x)*ln(y);
solve(map(Im, evalc(f)), {x,y});
                         

 

 

because in accordance with your boundary conditions:

eval(dsys3[3], [w(x) = 0, (D(w))(x) = 0, ((D@@2)(w))(x) = 0]);
                                       
 0.3693149535

Do not use  and  for this. Use curly braces instead in  solve  command:

solve({x>-infinity, x<infinity, x<>1/2}, x);
                           
 

    

You can not plot contour graphs for the function  lambda , because for fixed variables  Nb  and  Gamma2 , you get a function from only one variable  delta2 . Below are contour plots for  lambda  when  delta2=0.02..0.1  and   Nb=0.1...0.3 :

restart;
  h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
  K1:=((4/h(z)^4)-(sin(alpha)/Gamma2)-h(z)^2+Nb*h(z)^4):
  lambda:=unapply(Int(K1,z=0..1), Gamma2):
  L1:=0.2:
  d1:=0.2:
  alpha:=Pi/6:
 with(plots):
  display
  ( Matrix(3,2, [seq(contourplot(lambda(Gamma2), delta2=0.02..0.1,       Nb=0.1...0.3, labels=[typeset(`&delta;1`), typeset(conjugate(`&Delta;p`))], title=typeset("Effect of ", ''alpha'', " when ", Gamma,"2=", Gamma2)), Gamma2 in [10,20,30,40,50,-10])]));  


Purely visually, these graphics are almost indistinguishable. Compare:

contourplot(lambda(-10), delta2=0.02..0.1,  Nb=0.1...0.3);
contourplot(lambda(50), delta2=0.02..0.1,  Nb=0.1...0.3);

 

Since your parameters  N  and  m  each have 3 values, then there will be 3 * 3 = 9 all possible combinations. Therefore, you need nested loops to solve the system. But there is a new problem: Maple writes that there are too few boundary conditions:


 

``

``

w := .572433; x := 1.32156; y := 5.29387; z := .853043; b := -.1; pr := 6.2; m := [.5, 1, 1.5]; N := [10, 20, 30]; K := [black, red, green, blue, green, orange, gold, gray]; L := [solid, solid, solid, dash, solid, dot, dash]

for i to 3 do for j to 3 do sol1[i, j] := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x*(f(eta)*(diff(diff(f(eta), eta), eta))-m[j]^2*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[i], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); fplt[i, j] := plots[odeplot](sol1[i, j], [eta, f(eta)], color = K[i], axes = boxed, linestyle = L[j]); tplt[i, j] := plots[odeplot](sol1[i, j], [eta, theta(eta)], color = K[i], axes = box, linestyle = L[j]) end do end do; plots:-display(seq(seq(fplt[i, j], i = 1 .. 3), j = 1 .. 3)); plots:-display(seq(seq(tplt[i, j], i = 1 .. 3), j = 1 .. 3))

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 13, got 5

 

Error, (in plots:-display) expecting plot structure but received: fplt[1, 1]

 

Error, (in plots:-display) expecting plot structure but received: tplt[1, 1]

 

NULL

NULL


 

Download MHD_cchf_2_new.mw

You need to fill the space between the cube and the sphere with something, but so that it does not block the sphere. I suggest that you do this with red points using  plots:-pointplot3d command. Here are 2 options: in the first variant, the points fill the entire space between the cube and the sphere, in the second one - half of this space:

with(plottools): with(plots):
A:=sphere(color=pink, style=surface):
B1:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
B2:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1  and i<=0,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
display(<display(A,B1) | display(A,B2)>);
       

Here are 2 options for plotting: the first 10 and the first 20 Fibonacci numbers. As the numbers increase rather quickly, on the second plot, the difference between the first 9 numbers is almost invisible:

seq(combinat:-fibonacci(n), n=1..20);
plot([seq([n,combinat:-fibonacci(n)], n=1..10)], style=point);
plot([seq([n,combinat:-fibonacci(n)], n=1..20)], style=point);

 

I made a few fixes in your code:

restart;
N:=4; alpha:=5*3.14/180; r:=10; Ha:=5; H:=1;
dsolve(diff(f(x),x,x,x));
Rf:=diff(f[m-1](x),x,x,x)+2*alpha*r*sum*(f[m-1-n](x)*diff(f[n](x),x),n=0..m-1)
+(4-Ha)*(alpha)^2*diff(f[m-1](x),x);
dsolve(diff(f[m](x),x,x,x)-CHI[m]*(diff(f[m-1](x),x,x,x))=h*H*Rf,f[m](x));
f[0](x):=1-x^2;
for m from 1 by 1 to N do
CHI[m]:=`if`(m>1,1,0);
f[m](x):=int(int(int(CHI[m]*(diff(f[m-1](x),x,x,x))+h*H(diff(f[m-1](x),x,x,x))
+2*h*H*alpha*r*(sum(f[m-1-n](x)*(diff(f[n](x),x)),n=0..m-1))+4*h*H*alpha^2*
(diff(f[m-1](x),x))-h*H*alpha^2*(diff(f[m-1](x),x))*Ha,x),x)+_C1*x,x)+_C2*x+_C3;
s1:=evalf(subs(x=0,f[m](x)))=0;
s2:=evalf(subs(x=0,diff(f[m](x),x)))=0;
s3:=evalf(subs(x=1,f[m](x)))=0;
s:={s1,s2,s3}:
f[m](x):=simplify(subs(solve(s,{_C1,_C2,_C3}),f[m](x)));
end do;
f(x):=sum(f[i](x),i=0..N);
hh:=evalf(subs(x=1,diff(f(x),x))):
plot(hh,h=-1.5..-0.2);
A(x):=subs(h=-0.9,f(x));
plot(A(x),x=0..1);

 

The  coeff  command does not work for extracting the coefficients of polynomials from several variables. A special procedure is required for this. The  coefff  procedure extracts the coefficient in front of a monomial  t of the polynomial  P  from the variables  T .
 

restart;
H1 := 3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta;

Equation := 12:
printlevel := 2:

coefff:=proc(P,T,t)
local L,H,i,k:
L:=[coeffs(P,T,'h')]: H:=[h]: k:=0:
for i from 1 to nops(H) do
if H[i]=t then k:=L[i] fi:
od:
k;
end proc:

for i from 0 to Equation do
for j from 0 to Equation do
C[i, j]:=coefff(H1, {x,y}, x^i*y^j) = 0;

end do;
end do;

3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta

 

6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta = 0

 

18*a[1]^3*a[2]^2*b[2]-6*a[1]^3*b[2]^3-6*a[1]^2*a[2]^3*b[1]+18*a[1]^2*a[2]*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2*b[2]-6*a[1]*b[1]^2*b[2]^3-6*a[2]^3*b[1]^3+18*a[2]*b[1]^3*b[2]^2-10*delta*a[1]^3*a[2]-6*delta*a[1]^3*b[2]-10*delta*a[1]^2*a[2]*b[1]-10*delta*a[1]^2*b[1]*b[2]-10*delta*a[1]*a[2]*b[1]^2-10*delta*a[1]*b[1]^2*b[2]-6*delta*a[2]*b[1]^3-10*delta*b[1]^3*b[2]+32*a[1]*a[2]+48*a[1]*b[2]+48*a[2]*b[1]+32*b[1]*b[2] = 0

 

18*a[1]^4*a[2]*b[2]+36*a[1]^2*a[2]*b[1]^2*b[2]+18*a[2]*b[1]^4*b[2]-5*delta*a[1]^4-8*delta*a[1]^3*b[1]-10*delta*a[1]^2*b[1]^2-8*delta*a[1]*b[1]^3-5*delta*b[1]^4+16*a[1]^2+48*a[1]*b[1]+16*b[1]^2 = 0

 

6*a[1]^5*b[2]+6*a[1]^4*a[2]*b[1]+12*a[1]^3*b[1]^2*b[2]+12*a[1]^2*a[2]*b[1]^3+6*a[1]*b[1]^4*b[2]+6*a[2]*b[1]^5 = 0

 

3*a[1]^5*b[1]+6*a[1]^3*b[1]^3+3*a[1]*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

6*a[1]^2*a[2]^3+18*a[1]^2*a[2]^2*b[2]-18*a[1]^2*a[2]*b[2]^2-6*a[1]^2*b[2]^3-12*a[1]*a[2]^3*b[1]+36*a[1]*a[2]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]*b[2]^2-12*a[1]*b[1]*b[2]^3-6*a[2]^3*b[1]^2-18*a[2]^2*b[1]^2*b[2]+18*a[2]*b[1]^2*b[2]^2+6*b[1]^2*b[2]^3-16*delta*a[1]^2*a[2]-4*delta*a[1]^2*b[2]-16*delta*a[1]*a[2]*b[1]-16*delta*a[1]*b[1]*b[2]-4*delta*a[2]*b[1]^2-16*delta*b[1]^2*b[2]+80*a[2]+80*b[2] = 0

 

18*a[1]^3*a[2]^2+36*a[1]^3*a[2]*b[2]-18*a[1]^3*b[2]^2-18*a[1]^2*a[2]^2*b[1]+36*a[1]^2*a[2]*b[1]*b[2]+18*a[1]^2*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2+36*a[1]*a[2]*b[1]^2*b[2]-18*a[1]*b[1]^2*b[2]^2-18*a[2]^2*b[1]^3+36*a[2]*b[1]^3*b[2]+18*b[1]^3*b[2]^2-16*delta*a[1]^3-20*delta*a[1]^2*b[1]-20*delta*a[1]*b[1]^2-16*delta*b[1]^3+80*a[1]+80*b[1] = 0

 

18*a[1]^4*a[2]+18*a[1]^4*b[2]+36*a[1]^2*a[2]*b[1]^2+36*a[1]^2*b[1]^2*b[2]+18*a[2]*b[1]^4+18*b[1]^4*b[2] = 0

 

6*a[1]^5+6*a[1]^4*b[1]+12*a[1]^3*b[1]^2+12*a[1]^2*b[1]^3+6*a[1]*b[1]^4+6*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

18*a[1]^2*a[2]^2-18*a[1]^2*b[2]^2+72*a[1]*a[2]*b[1]*b[2]-18*a[2]^2*b[1]^2+18*b[1]^2*b[2]^2-10*delta*a[1]^2-16*delta*a[1]*b[1]-10*delta*b[1]^2+80 = 0

 

36*a[1]^3*a[2]+36*a[1]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]^2+36*b[1]^3*b[2] = 0

 

18*a[1]^4+36*a[1]^2*b[1]^2+18*b[1]^4 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]^2*a[2]-12*a[1]^2*b[2]+24*a[1]*a[2]*b[1]+24*a[1]*b[1]*b[2]-12*a[2]*b[1]^2+12*b[1]^2*b[2] = 0

 

12*a[1]^3+12*a[1]^2*b[1]+12*a[1]*b[1]^2+12*b[1]^3 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]*b[1] = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

(1)
   
 

 


 

Download coefff.mw

Edit.

In the first equation there should be the multiplication sign after  x , otherwise everything that stands in parentheses (after  x)  disappears.
See:

x:=2:
x(h(t));
                               
 2

TM:=proc(N)
if N<2 then error "Should be N>=2" fi;
Matrix(N+1, [[seq(p[i],i=1..N-1),o[3]], [o[1],seq(q[i],i=1..N-1),o[4]], [o[2],seq(r[i],i=1..N-1)]], shape = band[1,1], scan=band[1,1]);
end proc:


Example of use:

TM(5);
                                

 

To multiply the matrices, I replaced  &*  with the dot  . . Now everything works.

Help_(3)_new.mw


Edit.

for this. 

Example:

plot([cos(t), sin(t), t=-1..1], x=0..2, y=-2..2, color=red, scaling=constrained);   # Or

plot([cos(t), sin(t), t=-1..1], color=red, scaling=constrained, view=[0..2,-2..2]); 
 

First 114 115 116 117 118 119 120 Last Page 116 of 290