Kitonum

21840 Reputation

26 Badges

17 years, 225 days

MaplePrimes Activity


These are answers submitted by Kitonum

X:=<1,2,3,4>:
Y:=<5,6,7,8>:
x.X+y.Y;

                                    

In this example  X  and  Y  are vectors. For matrices everything is the same.


Edit.

Try  ContoursWithLabels  procedure  from  here .


Your example:

ContoursWithLabels(-3.392318438*exp(-4.264628895*x)*sin(6.285714286*y), -1/2 .. 1/2, -1/2 .. 3/2, {seq(-12 .. 12, 3)}, [color = black, axes = box, size=[1000,600]], Coloring = [colorstyle = HUE, colorscheme = ["Cyan", "Red"], style = surface]);

      


If you do not want coloring, then just remove  Coloring  option from the code.


With the built-in command  plots:-contourplot , do so

plots:-contourplot(-3.392318438*exp(-4.264628895*x)*sin(6.285714286*y), x = -1/2 .. 1/2, y = -1/2 .. 3/2, contours=[seq(-12..12,3)], size=[800,500], numpoints=10000);


Edit.

Execute:

op~(Sol);

Do := proc( F::list(procedure) , Q::list(list))
local n:=nops(F), m:=nops(Q);
if n<>m then error "Should be nops(F)=nops(Q)" fi;
seq(F[i]~(Q[i]), i=1..n);
end proc:


Example of use:

Do([x -> x , y -> y^2], [[0,1,2,3], [4,5,6,7]]);

                                            [0, 1, 2, 3], [16, 25, 36, 49]


Edit.

I took  Gamma/(2*Pi)=1  and plotted  Re(w)  (in red) and  Im(w)  (in blue):

restart;
w:=theta-I*ln(r):
X, Y:=(Re,Im)(w) assuming theta::real, r>0;
plot3d([[r*cos(theta),r*sin(theta),X], [r*cos(theta),r*sin(theta),Y]], theta=0..2*Pi, r=0..3, color=[red,blue], axes=normal, view=[-4.3..4.3, -4.3..4.3, -1..6.7]); 

                              

See help on  ?plot,tickmarks

Example:
restart;
Digits:=20:
plot(x^2, x=0..2, 1..1.00000000001); 
# Long values
plot(x^2, x=0..2, 1..1.00000000001, tickmarks=[default, [seq(1+2*10^(-12)*k=1+2*k*10^(`-12`), k=1..5)]]);  # Short values

Use nested  seq  command.

Example:

seq(seq(A[i,j] >= 0, j=1..4), i=1..3);

You can not find a limit with your procedure, because it for any particular n simply returns a number, but an exact dependence of the sum on n is needed.
The limit can be found as follows:

S:=unapply(sum(2*i/n*2/n, i=1..n), n);
simplify(S(n));
limit(%, n=infinity);

                                       

By  p  procedure the limit can be found only numerically with  a specific accuracy:

evalf[5](p(100000));

                                           2.0000

 

 

 

gl_inveq:=(t,x,alp)->tan((x-t)/alp/(1+t^2))-t:
gl_inv:=(v,alp)->fsolve(gl_inveq(t,v,alp)=0, t):
gl_inv(2,1);
# The calculation of a value of the function
evalf(Int(gl_inv(2,t), t=0..1));  # The calculation of the value of the integral

                                            0.8299950485
                                            -0.5405524297

You have an equation of the 9th degree with respect to lambda with two parameters  x  and  y . It is well known that in the general case the roots of such an equation can not be expressed in principle in terms of its coefficients. You can solve this equation numerically, but only by first setting the parameters.

Example:

x:=1: y:=2:
P:=_Z^9-28*_Z^8+328*_Z^7-2088*_Z^6+(-2*cos(y)-2*cos(x)+7852)*_Z^5+(28*cos(y)+28*cos(x)-17768)*_Z^4+(-152*cos(y)-152*cos(x)+23632)*_Z^3+(408*cos(y)+408*cos(x)-17232)*_Z^2+(-12*cos(x)*cos(y)-540*cos(y)-540*cos(x)+5844)*_Z+32*cos(x)*cos(y)+256*cos(y)+256*cos(x)-544:
fsolve(P, _Z);

   0.1348905839, 0.8646312171, 1.143198734, 1.706737179, 3.176390681, 4.304915397, 4.893289594, 5.142364314, 6.633582298

f:= x-> diff(g(x),x)/(1+g(x)):
applyop(eval, 2, f(x), g(x)=h);
subs(h=g(x), series(%, h=0, 4));

          

 

 

 

 

   

I do not have Maple 18 and so I can not confirm it, but try these options:

plot(x^2, x=-2.5..2.5, tickmarks=[spacing(0.5), default]);
# Or   
plot(x^2, x=-2.5..2.5, tickmarks=[[seq(-2.5+0.5*i=-2.5+0.5*i, i=0..10)], default]);
 

Usually I do it this way: in Maple I press  "prt sc"  key, then I paste it into the Word, then I crop it, removing the extra one.

Suppose we have a product of some members and we want members  with a lesser degree to stand in front of of the members with a greater degree. Here is the procedure that does this:

SortingProduct:=proc(Expr::{`*`,`^`})
local L, L1;
if type(Expr,`^`) then return Expr else
L:=[op(Expr)];
L1:=sort(L, (x,y)->degree(x)<=degree(y));
`*`(map(t->`if`(degree(t)<=1,t,`if`(type(t,`^`),(``(op(1,t)))^op(2,t),t)), L1)[]) fi;
end proc:


Example of use:

SortingProduct((s+1)*(s+2)^3*(s-4)*(s-1)^2*(s+5)*4*(s^2+3));

                


Edit.

   

In  plots:-matrixplot  command, the matrix must consist of numbers, not functions.

See help on this command.

First 142 143 144 145 146 147 148 Last Page 144 of 292