Kitonum

21530 Reputation

26 Badges

17 years, 85 days

MaplePrimes Activity


These are answers submitted by Kitonum

p1 and p2 are the same plane, because the coefficients are proportional. So angle=0 degrees

I do not think that there is a simple formula expressing this integral for arbitrary numbers  a  and  m. It is reasonable to write this down as a procedure:

P := (a, m)->int((x-a)^m/x, x);


Examples of use:

P(2, 3); 
P(-2, 3); 
P(2, -3);

A:=a*diff(F(x,y),x,x)+b*diff(G(x,y),x,x)+c*diff(F(x,y),x,y)+d*diff(F(x,y),x,x)+e*diff(G(x,y),x,y)+f*diff(F(x,y),y,y)+g*diff(G(x,y),x,y);
sort(collect(A, diff), (x,y)->(has(x,F) and has(y,G)));

 

 

Edit.

If you calculate the integral numerically, you need to pre-specify the values of all parameters.

Example:

f := exp(-1/2*(xop^2+yop^2))*exp(-((x-xop-2*Pe*(t-tp))^2+(y-yop)^2+z^2)/(4*(t-tp)))/((4*Pi^(3/2))*(t-tp)^(3/2));
x:=1: y:=2: z:=3: Pe:=4: t:=5:
deltaT := Int(f, [yop = -(-xop^2+1)^(1/2) .. (-xop^2+1)^(1/2), xop = -1 .. 1, tp = 0 .. t]);
evalf(%);

  

Your system in a real 3D defines the usual circle and the problem is to get formulas for obtaining the coordinates of any point of this circle.

S:= solve({2*x+y+z = 3, x^2+y^2+z^2 = 3}, [x, y, z], real, parametric); 

This is only one way to get an answer, in which Maple selects the variable  as a parameter. Here are 3 more ways:

S1:=solve({2*x+y+z = 3, x^2+y^2+z^2 = 3}, [y, z], real, parametric);
S2:=solve({2*x+y+z = 3, x^2+y^2+z^2 = 3}, [x, z], real, parametric);
S3:=solve({2*x+y+z = 3, x^2+y^2+z^2 = 3}, [x, y], real, parametric);

In  S1  method, Maple also takes  x  as a parameter and writes out the values of  [y, z]  as  functions of this parameter. Only the answer is more structured and the values  x  are indicated when there are no real solutions. In  S2  and  S3  methods, everything is the same, only as parameters  y  and  z  are selected. 

All these methods are inconvenient, because they are very cumbersome and do not allow you to easily work with them to solve, for example, such problems: find 100 points on this circle, evenly located on it, or build an animation to build this circle.

Below, we construct a single parametrization of this circle using an angle in the range  0..2*Pi . This angle is the angle of the rotation of a point on this circle with respect to the axis passing through the origin and the center of the circle:

restart;
Sys:=2*x+y+z = 3, x^2+y^2+z^2 = 3:
V:=<2,1,1>:
 # Vector of a normal to the plane 2*x+y+z = 3 
L:=x=2*t,y=t,z=t:  
# Parametric equations of the straight line with a directing vector V
convert(solve([L,2*x+y+z = 3]),list);
C:=rhs~(%[2..-1]);
# The center of the circle
solve({y=1/2,Sys}, explicit);
P:=rhs~(convert(%[1], list));
# The point on the circle for the initial value of the parameter t=0
M:=simplify(Student:-LinearAlgebra:-RotationMatrix(t, V));
# The matrix of rotation around the vector V
Eq:=simplify(convert(M.convert(P-C,Vector),list))+C;
# The parametric equation of the circle

 

## Two examples of the use the parametrization Eq  
with(plots): with(plottools):
display(sphere(sqrt(3)),spacecurve(Eq, t=0..2*Pi, color=red, thickness=4), view=[-2.3..2.3,-2.3..2.3,-2.3..2.3], axes=normal, scaling=constrained);
animate(spacecurve,[Eq, t=0..s, color=red, thickness=4], s=0..2*Pi, background=display(sphere(sqrt(3))), axes=normal, view=[-2.1..2.1,-2.1..2.1,-2.1..2.1], scaling=constrained, orientation=[20,70,0]);


 

 
 

 

Usually these commands (select and remove)  are applied to lists, so do so

remove(has, [D[1](xx[0])], xx[0]);
select(has, [D[1](xx[0])], xx[0]);


The square brackets can be easily removed from the result, if necessary.


 

Maple writes about an error, you have something mixed up with parentheses. I fixed it and got a constant:

Expr:=(1/10)*exp((2/135)*sqrt(-11)*sqrt(225)*t-(2/3*I)*x+1/15)/((3/10)*exp((2/135)*sqrt(-11)*sqrt(225)*t-(2/3*I)*x+1/5));
simplify(Expr);
plot3d(%, x=-1..1, t=-1..1);

Unfortunately, your system does not have real solutions:

restart;
sys:=[(-x3*cos(x5)+(1010-x4)*sin(x5))^2/x1^2+(-x3*sin(x5)-(1010-x4)*cos(x5))^2/x2^2=1, ((-50.5-x3)*cos(x5)+(1060.5-x4)*sin(x5))^2/x1^2+((-50.5-x3)*sin(x5)-(1060.5-x4)*cos(x5))^2/x2^2=1, ((404-x3)*cos(x5)+(1313-x4)*sin(x5))^2/x1^2+((404-x3)*sin(x5)-(1313-x4)*cos(x5))^2/x2^2=1,  -2*x2^2*cos(x5)^2*x3+2020*x2^2*cos(x5)*sin(x5)-2*x2^2*cos(x5)*sin(x5)*x3-2*x1^2*sin(x5)^2*x3-2020*x1^2*sin(x5)*cos(x5)+2*x1^2*sin(x5)*cos(x5)*x4=0, x5=Pi/2]:
solve(sys);

Of course, you can easily insert the cross between two symbols directly without using any special procedures, and in two ways (in infix or prefix notation).

The first way:
`a &times; b`;  # Infix notation
                              

The second way:
`&times;`(a, b);  # Prefix notation
                             


 In the second method, arguments need not necessarily be symbols. For example, for your example, you can write:

with(LinearAlgebra):
R := Vector(3, [x, y, z]):                                           
V := Vector(3, [u, v, w]):
`R &times; V`=R &x V;

# or
`&times;`(R,V)=R &x V;

                         

 

Your more complicated example:

U:=`R &times; V`;
`&times;`('R', cat(`(`, U, `)`));

                               
 

 

 

with(plots):
with(plottools):
animate(spacecurve,[[sqrt(1-s^2)*cos(t),sqrt(1-s^2)*sin(t),s], t=0..2*Pi, color=red, thickness=3], s=-1..1, background=display(sphere()), frames=60, scaling=constrained, view=[-1.2..1.2,-1.2..1.2,-1.2..1.2]);

                   

    Addition - another option: 

with(plots):
with(plottools):
f:=phi->rotate(spacecurve([cos(t),0,sin(t)], t=0..2*Pi, color=red, thickness=3), phi, [[0,0,0],[0,0,1]]):
animate(display,[f(phi)], phi=0..2*Pi, background=display(sphere()), frames=60, scaling=constrained, view=[-1.2..1.2,-1.2..1.2,-1.2..1.2], axes=normal); 

               

restart;
solve(sin(x)=0, allsolutions);
about(_Z1);


Addition. If you need to solve this equation at some interval, then solve the system to which you need to add  explicit  option.

Example:

solve({sin(x)=0, x>=0, x<=3*Pi}, allsolutions, explicit);
 

To get a  solution, I took an almost zero derivative  D(y)(2945)=0.00001  instead and used Preben's method from here :

restart;
ode:=diff(y(x),x,x)-0.00003019*abs(y(x))^0.337=9.542*10^(-13)*x; 
bcs:=y(0)=0,D(y)(2945)=0.00001;
ode2:=evalindets(ode,`^`,x->op(1,x)^(c*op(2,x)));
res:=dsolve({ode2,bcs},numeric,method=bvp[midrich],continuation=c,maxmesh=8192);
plots:-odeplot(res,[x,y(x)]);

 

Edit.
 

The first way:

restart;
alias(s[1]=sin(theta1), c[1]=cos(theta1)):
sin(theta1)*cos(theta1);


The second way:

restart;
s[1]:=sin(theta1): c[1]:=cos(theta1):
s[1]*c[1];


The third way:

restart;
subs([sin(theta1)=s[1],cos(theta1)=c[1]], sin(theta1)*cos(theta1));



 

 


 

Example:

evalc~([solve(z^3=1+I)]);  # All the roots of the third degree of  1+I  in a+I*b form
convert(%, radical);  # Conversion to radicals
convert~(%, polar);  # Conversion to polar 

restart;
rts := [-1.04922510287257-0.450627300642352*I, -1.04922510287257+0.450627300642352*I, 0.324928502807894-1.26649311642498*I, 0.324928502807894+1.26649311642498*I, 0.448593200129344]:
min(abs~(rts)[ ]);

                                                   0.4485932001

First 145 146 147 148 149 150 151 Last Page 147 of 290