Kitonum

21840 Reputation

26 Badges

17 years, 225 days

MaplePrimes Activity


These are answers submitted by Kitonum

In Maple 12 there was not  plottools:-getdata  command. Use  op  command instead. Your plot (let's call it P) contains several graphs.  op([1,1], P)  returns the data for the first graph as a numeric matrix, op([1,2], P)  is for the second graph and so on. Here is a simple example:

P:=plot([sin(x), cos(x)], x=-Pi..Pi, color=[red,blue]);
Q:=op(P);
data:=op([1,1], P);
plot(data);


Addition. If necessary, you can easily convert the received data from the matrix form to the list of lists, in which each sublist is the coordinates of some point on the graph:

convert(data, listlist);

Example:

restart;
A:=<a,b; c,d>;
LinearAlgebra:-Diagonal(A);  
# The output is a column vector
# or
seq(A[i,i], i=1..op([1,1], A));  # The output is a sequence


Do not use linalg package. It's deprecated.

Also you can use  lhs  and  rhs  commands for this:

CI:=OneSampleZTest(S, mu, sdev, confidence=0.95, output='confidenceinterval');

CI_lower:=lhs(CI);

CI_upper:=rhs(CI);

g:=-18+2*x-8*y+5*z=0;
a:=tcoeff(lhs(g));
g-a;

                   -18 + 2 x - 8 y + 5 z = 0
                              -18
                      2 x - 8 y + 5 z = 18
 

 

U := {A[1], A[2], B[2]}:
op~(0, U);

                                   {A, B}


Addition. Another option with  map  command:

map(u->op(0,u), U);

AdvanceDate("Jan-01-1981", 13214);
AdvanceDate(%, -13214);

                                                     "Mar-07-2017"
                                                     "Jan-01-1981"

 

First, I plotted your equations in the desired ranges, they specified the boundaries for the roots:

Digits:=20:

plots:-implicitplot([focdeltapioptS2Tbeta_eg, focbetapioptS2Tbeta_eg], beta=-0.1..1, delta=-0.1..1, color=[red,blue], thickness=2,  gridrefine=5, axes=box);
 
fsolve([focdeltapioptS2Tbeta_eg, focbetapioptS2Tbeta_eg], {beta=0.2..0.6, delta=-0.1..0.1});  
# The first solution 
fsolve([focdeltapioptS2Tbeta_eg, focbetapioptS2Tbeta_eg], {beta=-0.1..0.1, delta=0.2..0.6});  # The second solution
 

               

 Addition. You can substitute the solutions found in the equations and make sure that they satisfy them with high accuracy.

In fact, the result is correct, but not simplified for x>0. I do not know a simple solution to the problem. To simplify the result to the desired form, I was able only by changing the variable:

restart;
A:=Int(1/(x+2*sqrt(x)), x);  
# The initial integral in inert form
IntegrationTools:-Change(A, x=t^2, t);  # The change of variable x
simplify(combine(value(%), ln, anything, symbolic)) assuming t>0;  
# The simplification
subs(t=sqrt(x), %);  # The reverse change 

restart;
int(2-8*x^2+32*x^4-128*x^6+512*x^8-2048*x^10, x);
sort(%, x, ascending);

 

The domain of the function  z->arctanh(z)  in real domain is  -1<z<1 . See

FunctionAdvisor(definition, arctanh);

But  (exp(2*y)+sqrt((exp(2*y))^2+exp(2*y)))/exp(2*y)-1>1  for any real .
 


 

Your system has the parameter  V__system. To obtain a numerical solution, you must specify a numerical value for this parameter. I took  V__system=100 :

sys := {I__Arc = V__system/sqrt(2*Z1+R__Arc), R__Arc = (8750+C)/I__Arc^1.4}:
C := 300:  Z1 := 4:  V__system := 100:
solve(sys, {I__Arc, R__Arc});

                       {I__Arc = 1.178819336, R__Arc = 7188.237669}


fsolve  without additional options fails with this system.

For an expansion of the initial expression  ee  I slightly shortened acer's code and used expand  command with needed options:

ee:=sqrt(Dp)*(-Dp*sqrt(s+thetac)*alpha1*pinf*s^2-2*Dp*sqrt(s+thetac)*alpha1*pinf*s*thetac-Dp*sqrt(s+thetac)*alpha1*pinf*thetac^2+A2*Dp*sqrt(s+thetac)*alpha1*s+A2*Dp*sqrt(s+thetac)*alpha1*thetac+Dc*sqrt(s+thetac)*alpha1*pinf*s^2+Dc*sqrt(s+thetac)*alpha1*pinf*s*thetac+A1*Dc*alpha1*s^2+A1*Dc*alpha1*s*thetac+A1*sqrt(Dc)*sqrt(s+thetac)*s^2+A1*sqrt(Dc)*sqrt(s+thetac)*s*thetac-A2*Dc*sqrt(s+thetac)*alpha1*s)*exp((-lh+x)*sqrt(s)/sqrt(Dp))/((s+thetac)^(3/2)*s*(Dc*s-Dp*s-Dp*thetac)*(-sqrt(Dp)*alpha1+sqrt(s))):

new := simplify(radnormal(ee), size);

expand(new, exp((-lh+x)*sqrt(s)/sqrt(Dp)), s+thetac, pinf*s+pinf*thetac-A2, (Dc-Dp)*s-Dp*thetac);  # The final result 

      


 

Use plots:-shadebetween command.

Your example:
restart;
plots:-shadebetween(x+y+4, 25-x^2-y^2,x=0..1,y=x^2..2-x^2, showboundary = false, changefill = [color = khaki, transparency = 0], axes=normal, lightmodel=light1);

                 

Addition. The simplest way to get the projection of a body onto some coordinate plane is simply to specify the corresponding orientation. For example, the projection of this body on the xOz plane (the x axis goes to the left, the z axis goes up):

 plots:-shadebetween(x+y+4, 25-x^2-y^2,x=0..1,y=x^2..2-x^2, showboundary = false, changefill = [color = khaki, transparency = 0], axes=normal, orientation=[90,90,0], lightmodel=none);

        

 

 

This animation clearly shows how the set of solutions (red segments) changes when the parameter a changes in the range  - 6 .. 0

A:=plots:-animate(plot,[x^3 + a*x + 2, x=-4..4, -15..15, color=blue, thickness=2], a=-6..0, frames=121):
B:=proc(a)
local sol, n, p1, p2;
uses plots;
sol:=fsolve(x^3 + a*x + 2);
n:=nops([sol]);
if n=3 then p1:=plot(0,x=sol[1]..sol[2], color=red, thickness=3);
p2:=plot(0,x=sol[3]..4, color=red, thickness=4) else
p2:=plot(0,x=[sol][1]..4, color=red, thickness=4) fi;
display(`if`(n=3,[p1,p2],p2), view=[-4..4,-15..15]);
end proc:
C:=plots:-animate(B, [a], a=-6..0, frames=121):
plots:-display(A, C);

         
 

Edit.

The first term is 1, and each next term is equal to the previous term written down by the same digits in the reverse order plus the position of the previous member.

The procedure for this:

P:=proc(n)
local L, N;
option remember;
if n=1 then return 1 else
L:=convert(thisproc(n-1), base, 10);
N:=nops(L);
n-1+add(L[i]*10^(N-i), i=1..N) fi;
end proc:


Example of use:

seq(P(n), n=1..100);
1, 2, 4, 7, 11, 16, 67, 83, 46, 73, 47, 85, 70, 20, 16, 76, 83, 55, 73, 56, 85, 79, 119, 934, 463, 389, 1009, 9028, 8237, 7357, 7567, 7688, 8899, 10021, 12035, 53056, 65071, 17093, 39109, 90232, 23249, 94273, 37291, 19316, 61435, 53461, 16481, 18508, 80629, 92657, 75679, 97708, 80831, 13861, 16885, 58916, 62041, 14083, 38099, 99142, 24259, 95303, 30421, 12466, 66485, 58531, 13651, 15698, 89719, 91867, 76889, 98938, 84061, 16121, 12235, 53296, 69311, 11473, 37489, 98552, 25669, 96733, 33851, 15916, 62035, 53111, 11221, 12298, 89309, 90487, 78499, 99578, 87691, 19771, 17885, 58966, 67081, 18173, 37279, 97372

First 151 152 153 154 155 156 157 Last Page 153 of 292