Kitonum

21530 Reputation

26 Badges

17 years, 85 days

MaplePrimes Activity


These are answers submitted by Kitonum

There are no contradictions. The issue that you are plotting the wrong surface for which you want to obtain contours. Should be

f := exp(-r/2)*r^2*cos(2*phi);
plot3d(f, phi = 0..2*Pi, r = 0..15,  coords = cylindrical);
plots:-contourplot(f,  phi = 0..2*Pi, r = 0..15, coords = cylindrical, grid=[100,100]);

                                

Please note where there is a mark 15.

restart;
sol:=dsolve({diff(ca(t), t) = -3.600000000*10^20*exp(-15098.13790/(340-20*ca(t)))*ca(t), ca(0) = 2}, numeric):
f:=x->eval(ca(t), sol(x));
fsolve('f(t)'=0.2);  
# The root
plots:-display(plot(0.2, x=0..5, linestyle=3, color=black),plots:-odeplot(sol,[t,ca(t)], t=0..5, color=red));  # Visual check

                           

 

restart;
a1 := -k*L*(theta-1)*((z-1)*epsilon*delta-epsilon*z+z);
e:=op([-1,1], a1);
subs(e = freeze(e), a1);
applyop(collect, -1, %, z);
b1:=thaw(%);

                            
 

 

n:=4:
R:=Matrix(1,n):
for i from 1 to n do R[1,i]:=unapply(i*x, x);
end do:
R;

 

And what do you expect as a plot? Even if you have 2 parameters  t  and  s , and the functions  x(t,s)  and  y(t,s)  then the set of points on the plane  (x(t,s), y(t,s))  is not a curve, but some flat region. Here is an example of constructing such a region:

plot([seq([t-s,t^2+s, t=0..1], s=0..1, 0.01)], thickness=4, color=green);

                       

 

 

 

I used  plots:-logplot  so that you could view all the curves on one plot:

restart;
a[0], a[1], a[2] := 3.5927*10^33, 1.3197*10^19, 4.8478*10^4: 
A := plots:-logplot([seq(a[i]*x^i, i = 0 .. 2)], x = 2.7*10^14 .. 5.4*10^14, color = [red, blue, green]):
a[0], a[1], a[2] := 2.6235*10^34, 4.876*10^19, 9.0612*10^4:
B := plots:-logplot([seq(a[i]*x^i, i = 0 .. 2)], x = 5.4*10^14 .. 8.2450*10^14, color = [red, blue, green]):
a[0], a[1], a[2] := 8.5561*10^34, 1.0377*10^20, 1.3197*10^19: 
C := plots:-logplot([seq(a[i]*x^i, i = 0 .. 2)], x = 8.2450*10^14 .. 1.80*10^15, color = [red, blue, green]): 
plots:-display(A, B, C);

                           

 

 

A:=Array(0..3, 0..3, (i,j)->4*i+j+1);
convert(A, Matrix);


Example for an arbitrary list:

L:=[seq(rand(0..9)(), i=1..16)];
A:=Array(0..3, 0..3, (i,j)->L[4*i+j+1]);
convert(A, Matrix);

 

f := x->piecewise(1 <= x and x <= 2, c[1]*x+c[2], 2 <= x and x <= 3, c[3]*x+c[4], 3 <= x and x <= 4, c[5]*x+c[6]) ):
op(4, f(x));

 

L:=[[761, 768, 776, 784, 793, 803, 813, 823, 833, 842], [723, 725, 728, 731, 734, 738, 743, 749, 756, 764], [516, 516, 516, 517, 519, 522, 526, 531, 536, 541], [382, 384, 386, 389, 393, 398, 404, 411, 419, 427], [78, 86, 95, 105, 115, 125, 135, 144, 154, 164], [751, 760, 770, 780, 790, 799, 809, 819, 829, 839], [773, 783, 793, 803, 812, 822, 831, 840, 850, 859], [160, 170, 180, 189, 199, 209, 219, 229, 239, 249]]:
X:=[$ 1..10]:
P:=map(t->`[]`~(X, t), L);
plot(P, color=[red,blue,green,yellow,cyan,gold,pink,violet], size=[750,350], labels=[time,positions]);

      

 

 

We denote  a=-(epsilon-1)*psi/epsilon :

e1:=n = (theta-1)*(z-1)*(-k*psi*L*(-(epsilon-1)*psi/epsilon)^epsilon*k^epsilon+K*(-(epsilon-1)*psi*k/epsilon)^epsilon)/(gamma*((theta-1)*(z-1)*(-(epsilon-1)*psi*k/epsilon)^epsilon-(-(epsilon-1)*psi/epsilon)^epsilon*k^epsilon*theta*z*psi));
    subs(epsilon-1=-a*epsilon/psi, e1);
simplify(%) assuming a>0, k>0;

   

 

 

with(plottools):
A:=rectangle([0, 0], [10, 10], style=line, thickness=2,color = red):
f:=p->rotate(p, arctan(1/3), [5,5]):
g:=p->homothety(p, sqrt(10)/4, [5,5]):
h:=g@f:
plots:-display(seq((h@@n)(A), n=0..10));

                            

 

 

It looks like a bug.

3 different results. The plot confirms the correctness of the latter:

z:=exp(I*t):
f:=z^(1/2)*diff(z, t):
int(f, t=0..2*Pi);
int(evalc(f), t=0..2*Pi);
int(simplify(evalc(f)), t=0..2*Pi);
plot([Re(f), Im(f)], t=0..2*Pi, color=[red,blue], scaling=constrained);

                        
 

 

Addition. For the second example, all methods (in Maple 2016.2) yield the same result:

f:=1/2+exp(I*t):
evalf(Int(f, t=0..2*Pi));
int(f, t=0..2*Pi);
int(evalc(f), t=0..2*Pi);
int(simplify(evalc(f)), t=0..2*Pi);
plot([Re(f), Im(f)], t=0..2*Pi, color=[red,blue], scaling=constrained);

 

Use  Array  and  Matrix  instead  array  and  matrix:

U := Array(1 .. 5, 1 .. 5);
convert(U, Matrix);
for i to 5 do
for j to 5 do
if i = j then U[i, j] := 1 else
U[i, j] := 0; 
end if end do end do: 
U;

 

A more compact ways for solution the same task:

U := Array(1 .. 5, 1 .. 5, (i, j) ->`if`(i = j, 1, 0));

or

U := Matrix(5,  (i, j)-> `if`(i = j, 1, 0));

Just assigning  Fh1  and  theta  values from the first solution:

sol := {Fh1 = 121.6477702, theta = 0.9606764638}, {Fh1 = -121.6477702, theta = -2.180916190}:
assign(sol[1]);
Fh1, theta; 

                                         121.6477702, 0.9606764638
 

If you want to save the obtained points  (x,y)  in a list to use later, for example, for plotting the function  y(x), you can assign the resulting values to indexed variables  x[i], y[i]  at each step of the loop:

restart;
x[0]:=0: y[0]:=1: xf:=1: n:=10:
h:=evalf((xf-x[0])/n):
f:=(x,y) -> x+y:
for i from 1 to n do 
    k:=f(x[i-1],y[i-1]);
    y[i]:=y[i-1]+h*k;
    x[i]:=x[i-1]+h;
od:
L:=[seq([x[i],y[i]], i=0..n)];
  # List of received points
dsolve({diff(g(t),t)=t+g(t), g(0)=1}, g(t));  # The exact solution
assign(%):
plot([L, g(t)], t=0..1, color=[red, blue],  labels=["x", "y(x)"]);  # The plots of the approximate (red) and the exact (blue) solutions

 

 

First 161 162 163 164 165 166 167 Last Page 163 of 290