Kitonum

21530 Reputation

26 Badges

17 years, 85 days

MaplePrimes Activity


These are answers submitted by Kitonum

If you are interested in the image of a clock face with Maple, look at this post

http://www.mapleprimes.com/posts/143906-Visualization-Of-Clock-And-Degrees-Problem

 

vv, this is a very elegant solution, vote up!

Here is another solution, based on the procedure named  ArcOnSphere . The procedure draws the shortest arc on a sphere, connecting the specified points (the points do not have to be opposites). Required parameters:  A  and  B  are two points on the sphere, C is the center of the sphere (by default  C = [0, 0, 0] ), G are the graphics options for the space curve  (by default  G=[color=red, thickness=3, scaling=constrained] ).

restart;
ArcOnSphere:=proc(A::list, B::list, C::list:=[0,0,0], G::list(equation):=[color=red, thickness=3, scaling=constrained])
local Av, Bv, Cv, CA, CB, V, M, Phi;
uses Student[LinearAlgebra], plots;
Av, Bv, Cv:= op(convert~([A, B, C], Vector));
CA:=Av-Cv; CB:=Bv-Cv;
V:=CA &x CB;
M:=RotationMatrix(alpha, V);
Phi:=arccos(CA.CB/Norm(CA)/Norm(CB));
spacecurve(M.CA+Cv, alpha=0..Phi, op(G));
end proc:

 

Example of use:

L:=[[sqrt(3)/2,0,1/2], [0,1/2,sqrt(3)/2], [0,1,0], [1/sqrt(2),1/sqrt(2),0]]:  # 4 points on the unit sphere
L1, L2, L3, L4:=seq(ArcOnSphere(op(L[i..i+1])), i=1..nops(L)-1), ArcOnSphere(L[nops(L)], L[1]):  # The arcs connecting these points
Labels:=["A", "B", "C", "D"]:
T:=plots[textplot3d]([seq([op(L[i]+0.05*L[i]), Labels[i]], i=1..nops(L))], font=[times,bold,16]):
plots[display](L1, L2, L3, L4, T, plottools[sphere](style=surface));

                

 

 

interface(rtablesize=infinity):  # It is necessary that the matrices be displayed explicitly
A, B := LinearAlgebra:-RandomMatrix(15),  LinearAlgebra:-RandomMatrix(15);  # Specifying of two matrices
A+B,  3*A,  A^2,  A.B,  A^(-1);

 

Please note that for multiplying matrices, we use a dot rather than a sign  "*" 

DuplicationMatrix:=proc(n)
local A, a, L1, L2;
uses ListTools;
A:=Matrix(n, symbol=a, shape=symmetric);
L1:=[seq(seq(A[i,j], j=1..n), i=1..n)];
L2:=convert(L1, set);
Matrix(n^2,n*(n+1)/2, {seq(seq((i,j)=`if`(j=Search(L1[i], L2),1, 0), j=1..n*(n+1)/2), i=1..n^2)});
end proc:

 

Example of use:
C:=DuplicationMatrix(3);

                                      

 

Check.

A, V1, V2:=<a,b,c; b,d,e; c,e,f>, <a,b,c,d,e,f>, <seq(seq(A[i,j], j=1..3), i=1..3)>;
C.V1=V2;

 


 


 


 

Under the condition that  u, v, delta, lambda, phi, beta, alpha  are in the interval  ]0,1]  there are no solutions.

The proof.

Let   A=(alpha+lambda+u+delta)/(u+v+alpha) ,  B=(alpha+lambda+u+delta)/(u+v)

From the first inequality we have  beta/phi>B  and from the fourth inequality we have  beta/phi<A .  We have a contradiction because  A<B .

Theta:=[ 0, Pi/3, 2*Pi/3, Pi]:
Phi:=[ 0, Pi/3, 2*Pi/3, Pi, 4*Pi/3, 5*Pi/3, 2*Pi, 7*Pi/3]:
F:=(theta,phi)->[cos(phi)*sin(theta), sin(phi)*sin(theta), cos(theta)]:
{seq(seq(F(theta,phi), phi=Phi), theta=Theta)};
A:=plots[pointplot3d](%, color=red, symbol=solidcircle, symbolsize=20):
B:=plottools[sphere]([0,0,0], 1):
plots[display](A, B);

 

 


 

a := [1, 4, 2, 6, 8]:  b:={a[ ]};
{seq(seq(parse(cat(i,j)), j=b minus {i}), i=b)};
select(`<`, b union %, 50);

                 {1, 2, 4, 6, 8, 12, 14, 16, 18, 21, 24, 26, 28, 41, 42, 46, 48}

 

or using  combinat:-permute  instead of nested  seq  :

a := [1, 4, 2, 6, 8]:  b:={a[ ]};
map(parse@cat@op, combinat:-permute(b,2));
select(`<`, b union {%[ ]}, 50);

 

Edit.
                     

Apply  evalf  command to your answer.

restart;
with(Student[NumericalAnalysis]):
f:=x->abs(x):
a, b:=-1., 1.:
h:=(b-a)/4:
xx:=[a,a+h,a+2*h,a+3*h,b]:
yy:=map(f, xx):
xy:=zip((u,v)->[u,v], xx, yy);
s2:=CubicSpline(xy, independentvar=x);
P:=expand(Interpolant(s2));
plot([f(x), P], x=-1..1);
Draw(s2);
M:=maximize(abs(abs(x) - P), x=-1..1);

 

Edit.

 

restart; 
1 = int(abs(A*exp(-(1/3)*x^2))^2, x = -infinity .. infinity); 
solve({%, A > 0}); 
A := eval(``(A^4)^(1/4), %);  
# The final result

                        

 

Addition. If in the future you are going to do any numerical manipulations with  A , you must first use  expand  command, for example:

evalf(expand(A));

                                  0.6787185469

 

Examples:

L:=[x1+x2-x3=0, 2*x1-x2+x3=0, x2-3*x3=0]:
convert(L, Vector);

# or
%piecewise(seq(op([``, L[i] ]), i=1..nops(L)));

                            

 

Addition. You can also display it in a column without any brackets using a for loop:

L:=[x1+x2-x3=0, 2*x1-x2+x3=0, x2-3*x3=0]:
for i from 1 to nops(L) do
L[i];
od;

 

I think the reason is incorrect conversion, which does not need:

int(f(x)*f(y)*x^2*abs(x+y), x=-infinity..infinity, y=-infinity..infinity);
evalf(%);

                                     3/sqrt(Pi)

                                 1.692568750

 

f:=(x,n)->(1-x^2)^n/n!:
is(diff(f(x,n),x,x) = 2*(1-2*n)*f(x,n-1)+4*f(x,n-2));

                                     true
 

The proof below uses only the initial Maple conversion and  simplest transformations with roots:


 

restart;
A:=convert(hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)),elementary) assuming z>1:
B:=normal(numer(A))/denom(A);
 

(-((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3)+((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3))/(z*(3*z-3)^(1/2)*((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3)*((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3))

(1)

B1:=(1/2)*sqrt(27*z^3-27*z^2+4)+(3/2)*z*sqrt(3*z-3):
B2:=(1/2)*sqrt(27*z^3-27*z^2+4)-(3/2)*z*sqrt(3*z-3):
expand(B1*B2);  # Below we use (2) for simplification of B

1

       (2)

'B'=numer(B)/`*`(op(1..2,denom(B))); # It follows from (2)

B = (-((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3)+((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3))/(z*(3*z-3)^(1/2))

(3)

# It remains to prove that numer(B)=sqrt(3*z-3)
# We denote t=B1^(1/3)-B2^(1/3) and cube both sides of this equation
t^3=B1-3*t-B2: # It follows from (2)
is(eval(%, t=sqrt(3*z-3)));

true

       (4)

 


 

Download 111.mw

I  simplified a little notations for your system. Maple finds all solutions of the system in a very bulky form. To simplify the answer the numerical values of the system parameters should be specified. See the attached file.

solutions1.mw

Edit.

First 170 171 172 173 174 175 176 Last Page 172 of 290