Kitonum

21530 Reputation

26 Badges

17 years, 85 days

MaplePrimes Activity


These are answers submitted by Kitonum

Put braces or square brackets:

F1 := -e*u*w-d*u+h*u+r1*z:

F2 := e*u*w-a*v-s*v*y+(r2+r3)*z:

F3 := k*v-u*w:

F4 := r3*z-b*y-(r2+r1)*y:

F5 := s*v*y-r*z:

solve({F1, F2, F3, F4, F5}, {u, v, w, y, z});

restart;

with(plots):

pr := 0.72: p := 0: n := [2, 3, 4, 5]: s := 1: a := 0.2: b := 1: L:=[red,blue,green,gold]:

for j to nops(n) do R1 := 2*n[j]/(1+n[j]); R2 := 2*p/(1+n[j]);

sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2) = 0, diff(diff(theta(eta), eta), eta)+pr*s^f(eta)*(diff(theta(eta), eta))+R2*pr*s*(diff(f(eta), eta))*theta(eta)+2*(a*(diff(f(eta), eta))+b*theta(eta))/(n[j]-1) = 0, f(0) = 0, (D(f))(0) = 1+b*((D@@2)(f))(0), (D(f))(5) = 0, theta(0) = 1+s*(D(theta))(0), theta(5) = 0], numeric, method = bvp); fplt[j] := plots[odeplot](sol1, [eta, diff(diff(f(eta), eta), eta)], color=L[j], axes = boxed);

tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color=L[j], axes = boxed) end do:

 

plots:-display([seq(fplt[j], j = 1 .. nops(n))]);

plots:-display([seq(tplt[j], j = 1 .. nops(n))]);

Example:

P:=2+x^5+x*y^3+x^2*y^4:

map(t->degree(t,x)!*degree(t,y)!*t, P);

                                              48*x^2*y^4+120*x^5+6*x*y^3+2

In this example, you can also use oblique quotes (this method is also suitable for earlier versions of Maple):

`4 + sqrt(9) = x - 1`:

parse(%);

%;

x=solve(%);

                                 

 

You can also delay the calculation of  sqrt(9)  by using of direct quotes:

4 + 'sqrt(9)' = x - 1;

%;

x=solve(%);

                                  

 

Your code works correctly when to end each line with a semicolon or a colon:

schro := {diff(psi(x), x, x)-(alpha*x^4+x^2-energy)*psi(x) = 0};

ic := {psi(3) = 0, (D(psi))(3) = 1};

schro1 := subs(energy = 3.30687, alpha = .1, schro);

soln1 := dsolve(schro1 union ic, {psi(x)}, type = numeric);

with(plots):

odeplot(soln1, [x, psi(x)], -3 .. 3);

Example (vector-row of plots):

plots[display](<plot(sin(x), x=-Pi..2*Pi, color=red) | plot(cos(x), x=-Pi..2*Pi, color=blue)>);

          

 

 

 

In your equation a  is a parameter. Maple usually either do not solve the equation with a parameter or gives an incorrect answer. If  a  is a specific number then there is no problem:

solve({cos(x)=-1/3, x>Pi/2, x<3*(Pi/2)}, x, allsolutions, explicit);

                           {x = Pi-arccos(1/3)}, {x = arccos(1/3)+Pi}

Maple does not integrate  equations automatically. You can do it as follows:

                

 

 

 

If to make substitutions  c=1/(a*b), d=(b-1)/(a*b) , we get the correct result

restart;

Digits:=20:

relativní_tlak:=<0.063018,0.078419,0.119628,0.159668,0.199865>:

ads_mnozstvi:=<0.001467443666,0.001528693055,0.001659939952,0.001774105924,0.001883866808>:

bet:=x/(1-x)/(1/(a*b)+((b-1)/(a*b))*x):

bet1:=subs({1/(a*b)=c, (b-1)=d*(a*b)}, bet);

with(Statistics):

bet_nejmensi_ctverce:=NonlinearFit(bet1,relativní_tlak,ads_mnozstvi,x,parameternames=[c,d],output=parametervector);

solve({1/a/b=%[1], (b-1)/a/b=%[2]});

assign(%);

plots[display](plot(x/(1-x)/(1/(a*b)+(b-1)/(a*b)*x), x=0..0.2, color=blue), plot(relativní_tlak,ads_mnozstvi, style=point, color=red, symbolsize=12));

         

 

 

 

In  [1.56257913677048,108.232791649022]  You forgot the first value to divide by 1000.

 

Edited.

 

Just use  isolve  command:

isolve(178*x + 312*y = 14);

                               {x = -49-156*_Z1, y = 28+89*_Z1}

_Z1  is  any integer constant.

I did not understand what  "by using fractional"  means.

Just use  dsolve  command:

restart;

dsolve(R*diff(q(t), t)+1/C*q(t)=v(t), q(t));

In  Maple  is the imaginary unit. Replace it by any name, for example,  C :

PDE[1] := diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[AB]);

PDE[2] := -(diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[C]))+diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[A])+diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[B]);

pdsolve(PDE[1] = 0);

pdsolve(PDE[2] = 0);

pdsolve({PDE[1] = 0, PDE[2] = 0});

Example:

numtheory[cfrac]([1, 1, 1, 2]);

                                                             8/5

plot([sin(x), sin(2*x), sin(3*x)], x=0..2*Pi, color=[red, blue, green], thickness=2, scaling=constrained, axes=box, legend=[sin(x), sin(2*x), sin(3*x)]);

                 

 

Addition. If the number of your curves is large then you can use  seq  command. For the example above the list of the functions will be  [seq(sin(a*x), a=1..3)]

 

 

 

 

 

B, C:= op~(1,A), op~(2,A);

First 178 179 180 181 182 183 184 Last Page 180 of 290