Kitonum

21530 Reputation

26 Badges

17 years, 85 days

MaplePrimes Activity


These are answers submitted by Kitonum

1. The biggest cake cut in half and give to the first and the second persons. From the second cake cut off  7/32  part (as a sector) and give together with the least cake to the third person . The remaining  25/32  of the second cake goes to fourth person.

2. The general case is a challenge, and I still don't know how to solve it.

Test:=f->`if`((depends(op(1,f),x) and not depends(op(1,f),{y,z})) or (depends(op(2,f),y) and not depends(op(2,f),{x,z})) or (depends(op(3,f),z) and not depends(op(3,f),{x,y})), false, true);

 

Example of use:

fff:=[theta[1]*y+theta[2]*z,theta[5]*y,theta[10]*x+theta[11]*y+theta[12]*z+theta[14]*x*y+theta[15]*x*z+theta[16]*y*z+theta[17]*x^2+theta[18]*y*y+theta[19]*z*z+theta[20]]:

Test(fff);

                                                                         false

 

Edited.

May be it should be  (x-y)^2+(y-z)^2+(z-x)^2 = 3 . This is the infinite right circular cylinder of radius 1 whose axis is the line with parametric equation  x=t, y=t, z=t  (it is easy to prove).  Therefore your surface can be obtained by rotating around the axis  x=-t, y=t, z=t  of the standard cylinder  x^2+y^2=1  by the angle  arccos(1/sqrt(3)) :

C:=plot3d([cos(t),sin(t),h], t=0..2*Pi, h=-2..2, axes=normal, scaling=constrained, lightmodel=light1):

plottools[rotate](C, arccos(1/sqrt(3)), [[0,0,0], [-1,1,0]]);

                                

 

 

 

 

In your example, always  R2 = 0  because  p=0 . Therefore, for any  n  you always get the same plot.  For the example I have taken  p=1 .

The plotting for  n=1, 6, 11 :

restart;

with(plots):

setoptions(title = `Family Plot`, axes = boxed):

pr := 0.71: p := 1: q := 0: b := 0: l := 0: s := 0: m := 0:

for i from 1 to 3 do

n:=1+5*(i-1);

R1 := 2.*n/(1+n);

R2 := 2.*p/(1+n);                                    

sol[i]:= dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2) = 0, diff(diff(theta(eta), eta), eta)+.71*f(eta)*(diff(theta(eta), eta))-.71*(diff(f(eta), eta))*theta(eta)*R2 = 0, f(0) = 0, (D(f))(0) = 1.8+b*((D@@2)(f))(0), (D(f))(18) = 0, theta(0) = 1+s*(D(theta))(0), theta(18) = 0], numeric, method = bvp[midrich]);

od:

display([seq(odeplot(sol[i], [eta, theta(eta)], eta=0..5, color = [red,blue,gold][i], axes = boxed),i=1..3)]);

                      

 

 

 

 

It can be done as in the Help.

Example:

df := DataFrame( < 1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12 >, 'rows' = [ 'a', 'b', 'c' ], 'columns' = [ 'A', 'B', 'C', 'D' ] );

df['a'..'b', 'B'..'D'];  # Removed third row and first column

                                

eq2 := -4*A[2]*cos(2*x)-16*A[4]*cos(4*x)-36*A[6]*cos(6*x)-64*A[8]*cos(8*x)+a*A[0]+cos(8*x)*a*A[8]+cos(6*x)*a*A[6]+cos(4*x)*a*A[4]+2*cos(2*x)*q*A[0]+cos(2*x)*a*A[2]+q*A[8]*cos(6*x)+q*A[8]*cos(10*x)+q*A[6]*cos(4*x)+q*A[6]*cos(8*x)+q*A[4]*cos(2*x)+q*A[4]*cos(6*x)+q*A[2]*cos(4*x)+q*A[2]:

select(t->not has(t, cos), eq2);

                                                                      a*A[0]+q*A[2]

Try

simplify(A1^2+B1^2-CC1^2, size);

If I understand correctly, you want to both animations built simultaneously, rather than sequentially. To do this, remove the option  insequence = true . Also the parameters  b  and  J  should be specified in advance.

Example:

b:=1: J:=2:

tau[1] := h-1+(4/3)*(1/sqrt(3)-h+1)*sqrt(3)*(sqrt(3)*((1/4)*J^2-z^2)/(J^2*b));

tau[2] := (4/3)*sqrt(3)*((1/4)*h^2-z^2)/(h^2*b);

plot2 := plots[animate](plot, [tau[1], z = -(1/2)*J .. (1/2)*J, color = red, legend = shear*stress], h = 1 .. 1+1/sqrt(3)):

plot3 := plots[animate](plot, [tau[2], z = -(1/2)*h .. (1/2)*h, color = blue, legend = shear*stress], h = 0 .. 1):

plots[display]([plot2, plot3]);

 

 

 

Should be

factor(x^2-2*a*x+a^2);

                                                     (a - x)^2

 

Addition: In standard interface in 2d math you can do a space between  a  and  x . Maple regards a space between two symbols as a multiplication sign.  ax  in your code is just a new symbol, not  a*x . A space between a number (numeric type) and a symbol you do not necessarily have to do. For example in 2d math,  2a  is the same as 2 a  or  2*a 

V_matrix:=<seq(V[i], i=1..100)>;

You can solve the equation numerically for specific values of parameters and an initial condition.

Example:

eq:=diff(y(x),x) - (Q - x*p0*(exp(alpha-beta*y(x)))/(1+exp(alpha-beta*y(x))))^2=0:
sol:=dsolve({eq, y(0)=0}, numeric, parameters=[Q,p0,alpha,beta] );
sol(parameters=[1,2,3,4]);
plots[odeplot](sol, [x,y(x)], x=0..5);

                                      

 

 Addition. `Series` solution (above) fits only near x=0. Compare: 

restart;
eq:=diff(y(x),x) - (Q - x*p0*(exp(alpha-beta*y(x)))/(1+exp(alpha-beta*y(x))))^2=0:
P:=[Q,p0,alpha,beta]:
sol1:=dsolve({eq,y(0)=0}, numeric, parameters=P):
sol1(parameters=[1,2,3,4]):
dsolve([eq, y(0) = 0], y(x), type = 'series'):
sol2:=convert(%, polynom):
sol2:=eval(rhs(sol2),P=~[1,2,3,4]);

plots[display](plots[odeplot](sol1,[x,y(x)], x=0..5, color=red, legend=`Numerical solution`), plot(sol2, x=0..5, color=blue, legend=`Solution by series`), view=[0..5,-1..1.2]);

        

 

 

 

In  #2  should be

convert~(L, string);

                               ["Norman.Mailer", "Richard.Brautigan"]

Even simplier example:

g:= a -> int(x+a, x=a..2*a):

g(1);   # OK

eval(g(x), x=1);  # The error ( a premature calculation)

eval(g(z), z=1);  # OK

eval('g(x)', x=1);  # OK (a workaround)

V:=Int(x*sqrt(2*x^4+3), x);

value(V);  # The result (a direct calculation)

IntegrationTools[Change](V, u = sqrt(2)*x^2);  # Calculation by a change

value(%);

combine(expand(eval(%, u = sqrt(2)*x^2)));   # The result

                         

 

Int  is an inert form of an integral.

Here is a simple example of the equation with the explicit solution, in which the same error:

dsolve({diff(y(x),x)*(x-1)^2+1=0, y(0)=0});

sol:=dsolve({diff(y(x),x)*(x-1)^2+1=0, y(0)=0}, numeric);

sol(2);

 

 It is obvious that the curve going from point (0,0) can not be continuously extended further right of  x = 1

 

First 179 180 181 182 183 184 185 Last Page 181 of 290