Kitonum

21840 Reputation

26 Badges

17 years, 226 days

MaplePrimes Activity


These are answers submitted by Kitonum

In this example, you can also use oblique quotes (this method is also suitable for earlier versions of Maple):

`4 + sqrt(9) = x - 1`:

parse(%);

%;

x=solve(%);

                                 

 

You can also delay the calculation of  sqrt(9)  by using of direct quotes:

4 + 'sqrt(9)' = x - 1;

%;

x=solve(%);

                                  

 

Your code works correctly when to end each line with a semicolon or a colon:

schro := {diff(psi(x), x, x)-(alpha*x^4+x^2-energy)*psi(x) = 0};

ic := {psi(3) = 0, (D(psi))(3) = 1};

schro1 := subs(energy = 3.30687, alpha = .1, schro);

soln1 := dsolve(schro1 union ic, {psi(x)}, type = numeric);

with(plots):

odeplot(soln1, [x, psi(x)], -3 .. 3);

Example (vector-row of plots):

plots[display](<plot(sin(x), x=-Pi..2*Pi, color=red) | plot(cos(x), x=-Pi..2*Pi, color=blue)>);

          

 

 

 

In your equation a  is a parameter. Maple usually either do not solve the equation with a parameter or gives an incorrect answer. If  a  is a specific number then there is no problem:

solve({cos(x)=-1/3, x>Pi/2, x<3*(Pi/2)}, x, allsolutions, explicit);

                           {x = Pi-arccos(1/3)}, {x = arccos(1/3)+Pi}

Maple does not integrate  equations automatically. You can do it as follows:

                

 

 

 

If to make substitutions  c=1/(a*b), d=(b-1)/(a*b) , we get the correct result

restart;

Digits:=20:

relativní_tlak:=<0.063018,0.078419,0.119628,0.159668,0.199865>:

ads_mnozstvi:=<0.001467443666,0.001528693055,0.001659939952,0.001774105924,0.001883866808>:

bet:=x/(1-x)/(1/(a*b)+((b-1)/(a*b))*x):

bet1:=subs({1/(a*b)=c, (b-1)=d*(a*b)}, bet);

with(Statistics):

bet_nejmensi_ctverce:=NonlinearFit(bet1,relativní_tlak,ads_mnozstvi,x,parameternames=[c,d],output=parametervector);

solve({1/a/b=%[1], (b-1)/a/b=%[2]});

assign(%);

plots[display](plot(x/(1-x)/(1/(a*b)+(b-1)/(a*b)*x), x=0..0.2, color=blue), plot(relativní_tlak,ads_mnozstvi, style=point, color=red, symbolsize=12));

         

 

 

 

In  [1.56257913677048,108.232791649022]  You forgot the first value to divide by 1000.

 

Edited.

 

Just use  isolve  command:

isolve(178*x + 312*y = 14);

                               {x = -49-156*_Z1, y = 28+89*_Z1}

_Z1  is  any integer constant.

I did not understand what  "by using fractional"  means.

Just use  dsolve  command:

restart;

dsolve(R*diff(q(t), t)+1/C*q(t)=v(t), q(t));

In  Maple  is the imaginary unit. Replace it by any name, for example,  C :

PDE[1] := diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[AB]);

PDE[2] := -(diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[C]))+diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[A])+diff(f(theta[C], theta[A], theta[B], theta[AB]), theta[B]);

pdsolve(PDE[1] = 0);

pdsolve(PDE[2] = 0);

pdsolve({PDE[1] = 0, PDE[2] = 0});

Example:

numtheory[cfrac]([1, 1, 1, 2]);

                                                             8/5

plot([sin(x), sin(2*x), sin(3*x)], x=0..2*Pi, color=[red, blue, green], thickness=2, scaling=constrained, axes=box, legend=[sin(x), sin(2*x), sin(3*x)]);

                 

 

Addition. If the number of your curves is large then you can use  seq  command. For the example above the list of the functions will be  [seq(sin(a*x), a=1..3)]

 

 

 

 

 

B, C:= op~(1,A), op~(2,A);

1. The biggest cake cut in half and give to the first and the second persons. From the second cake cut off  7/32  part (as a sector) and give together with the least cake to the third person . The remaining  25/32  of the second cake goes to fourth person.

2. The general case is a challenge, and I still don't know how to solve it.

Test:=f->`if`((depends(op(1,f),x) and not depends(op(1,f),{y,z})) or (depends(op(2,f),y) and not depends(op(2,f),{x,z})) or (depends(op(3,f),z) and not depends(op(3,f),{x,y})), false, true);

 

Example of use:

fff:=[theta[1]*y+theta[2]*z,theta[5]*y,theta[10]*x+theta[11]*y+theta[12]*z+theta[14]*x*y+theta[15]*x*z+theta[16]*y*z+theta[17]*x^2+theta[18]*y*y+theta[19]*z*z+theta[20]]:

Test(fff);

                                                                         false

 

Edited.

May be it should be  (x-y)^2+(y-z)^2+(z-x)^2 = 3 . This is the infinite right circular cylinder of radius 1 whose axis is the line with parametric equation  x=t, y=t, z=t  (it is easy to prove).  Therefore your surface can be obtained by rotating around the axis  x=-t, y=t, z=t  of the standard cylinder  x^2+y^2=1  by the angle  arccos(1/sqrt(3)) :

C:=plot3d([cos(t),sin(t),h], t=0..2*Pi, h=-2..2, axes=normal, scaling=constrained, lightmodel=light1):

plottools[rotate](C, arccos(1/sqrt(3)), [[0,0,0], [-1,1,0]]);

                                

 

 

 

 

First 180 181 182 183 184 185 186 Last Page 182 of 292