Kitonum

21595 Reputation

26 Badges

17 years, 163 days

MaplePrimes Activity


These are answers submitted by Kitonum

Your equations can only be solved numerically for the specified parameters.

Here is the example of the solution of the first equation:

restart;

b, m, y1, y2:=1, 2, 3, 4:  # Specification of the parameters

Sol:=solve({(b+m*yc)^3*yc^3/((b+2*m*yc)*(b+m*y1)*y1)-(b+m*yc)^3*yc^3/((b+2*m*yc)*(b+m*y2)*y2) = y2^2*((1/2)*b+(1/3)*m*y2)-y1^2*((1/2)*b+(1/3)*m*y1)}, {yc}):

op(map(rhs@op@fsolve, [Sol], yc, complex));  # All solutions

3.477366262,  0.9018399724+3.525754065*I,  -3.265522931+2.179059836*I,  -0.2500003440,  -3.265522931-2.179059836*I,  0.9018399724-3.525754065*I

 

Example:

L:=[$ 1..25];

A:=Matrix(5, L);

 

 

This does  VectorCalculus[Gradient]  command.

1) In Maple  cosec  is coded as  csc .

2) The identity  6*x*cot(x) - 3*x^2*csc(x)^2=6*x*cot(x)+3*x^2*(-1-cot(x)^2)  can be proved by the direct commands  is  or  testeq :

is(6*x*cot(x) - 3*x^2*csc(x)^2=6*x*cot(x)+3*x^2*(-1-cot(x)^2));

testeq(6*x*cot(x) - 3*x^2*csc(x)^2=6*x*cot(x)+3*x^2*(-1-cot(x)^2));

                                                          true

                                                          true

restart;

f := plottools[transform]((x, y)->[x-(1/2)*y, y]):

A := plottools[polygon]([[-1, -1], [-1, 1], [1, 1], [1, -1]], style = line, color = blue):

B := POLYGONS(op(f(A)), COLOR(RGB, 1.0, 0., 0.)):

plots[display](A, B, scaling = constrained);

 

 

You have forgotten to call  plots  package. Replace  display  with  plots[display]. I have not found other errors in your code.

Exact factorization of the original polynomial is possible, but very cumbersome:


 

solve(x^3+x^2+2*x+1, explicit);

``(x+1/3+(1/6)*(44+12*69^(1/2))^(1/3)+(11/600)*(44+12*69^(1/2))^(2/3)-(1/200)*(44+12*69^(1/2))^(2/3)*69^(1/2))*``(x^2+(2/3)*x-(1/6)*x*(44+12*69^(1/2))^(1/3)-(11/600)*x*(44+12*69^(1/2))^(2/3)+(1/200)*x*(44+12*69^(1/2))^(2/3)*69^(1/2)+2/3-(7/60)*(44+12*69^(1/2))^(1/3)+(13/600)*(44+12*69^(1/2))^(2/3)+(1/600)*(44+12*69^(1/2))^(2/3)*69^(1/2)+(1/60)*(44+12*69^(1/2))^(1/3)*69^(1/2))

(1)

``


Download factorization.mw

You can use  usual polynomial interpolation.

Example:

Phi := [0, 1, 1.5, 2, 3]:

R := [1, 3, 3.5, 4.5, 6]:

f := unapply(CurveFitting[PolynomialInterpolation](Phi, R, phi), phi);

A := plot(R, Phi, coords = polar, style = point, color=blue, symbolsize=15):

B := plot(f(phi), phi = 0 .. 3, coords = polar):

plots[display](A, B, scaling=constrained);

 

 Addition: the same on polar grid:

plots[display](A, B, axiscoordinates = polar);

 

 

with(plots):
with(plottools):
with(SolveTools):
with(DocumentTools):
Sol := solve({(x-1)^2+(y-1/.8)^2 = (1/.8)^2, (x-1.2/(1+1.2))^2+y^2 = 1/(1+1.2)^2}, [x, y]):
x0 := rhs(Sol[2, 1]): y0 := rhs(Sol[2, 2]):
Point2 := disk([x0, y0], 0.02, color = red):
R := sqrt(x0^2+y0^2):
Do(sc = evalf(R)):
cir := circle([0, 0], sc):
display(cir, Point2, view = [-1 .. 1, -1 .. 1], scaling = constrained);

 

 

Expr:=-tau*alpha*sigma*omega*(tau-omega^(-sigma))/(s*L*(1-gamma-tau^2+tau^2*gamma))

-(sigma*alpha)/s*(1-tau*omega^sigma)/(omega^(sigma-1)*(1-gamma)*L*(1/tau-tau));

A:=factor(denom(op(1, Expr)));

subs(op(1,Expr)=numer(op(1,Expr))*1/A, Expr);

 

 

X:=[10,15,20,25,30,35,40]: 

Y:=[2.01,4.87,6.50,9.875,14.00,18.90,24.40]:


 f:=x->`if`(is(x in X), Y[ListTools[Search](x,X)], undefined):

 

Examples:

f(35);    f(1);


                  18.90

                undefined

 

If we assume that a solution exists and substitute into the equation  x = 0, we obtain  theta (0) = 0. But then, solving with these initial conditions, we have only the trivial solution:

eq:=(1+theta(x))*diff(theta(x),x)+x*diff(theta(x),x)^2+x*(1+theta(x))*diff(theta(x),x,x)-theta(x)^3-diff(theta(x),x)=0;

ics:=theta(0)=0, D(theta)(0) = 0;

Sol:=dsolve({eq, ics}, numeric);

plots[odeplot](Sol,[x,theta(x)], x=0..1, axes=box);

 

 

 

 

 

Here is step by step solution. I used my procedure  JordanGausse . This procedure step by step solves any system of linear equations by Gauss - Jordan elimination. In the procedure, the Russian text is used. After I prepare the English version, I will submit  code of the procedure to the mapleprimes forum.

Unfortunately, when loading the Russian text was distorted. Here is a translation into English:

Step 1: write the system in matrix form

Step 2: divide row 1 by 4

Step 3: row 1, multiplied by -2, add to row 2

Step 4: row 1, multiplied by -4, add to row 3

Step 5: swap the positions of columns 2 and 3

Step 6: divide row 2 by 3/2

and so on ...

 

Sys:=
     4*x1 + 2*x2 - 7*x3 - 11*x4 = 5,
         
     2*x1 + 1*x2 - 2*x3 - 4*x4 = 2,
         
     4*x1 + 2*x2 - 10*x3 - 14*x4 = 6:

X:= [x||(1..4)]:
A, V:= LinearAlgebra:-GenerateMatrix([Sys], X);

A, V := Matrix(3, 4, {(1, 1) = 4, (1, 2) = 2, (1, 3) = -7, (1, 4) = -11, (2, 1) = 2, (2, 2) = 1, (2, 3) = -2, (2, 4) = -4, (3, 1) = 4, (3, 2) = 2, (3, 3) = -10, (3, 4) = -14}), Vector(3, {(1) = 5, (2) = 2, (3) = 6})

(1)

JordanGausse(A, V);

`Çàäàííàÿ ñèñòåìà`

``

4*x[1]+2*x[2]-7*x[3]-11*x[4] = 5

2*x[1]+x[2]-2*x[3]-4*x[4] = 2

4*x[1]+2*x[2]-10*x[3]-14*x[4] = 6

``

``

`Øàã  ¹ 1:  çàïèøåì ñèñòåìó â ìàòðè÷íîé ôîðìå.`

`Ïîëó÷èì:`

``

"[[[x[1],x[2],x[3],x[4],,],[,,,,,],[4,2,-7,-11,,5],[2,1,-2,-4,,2],[4,2,-10,-14,,6]]]"

``

``

``

`Øàã  ¹ 2 : ïîäåëèì âñå ýëåìåíòû ñòðîêè  ¹  1  íà  4`

`Ïîëó÷èì:`

``

"[[[x[1],x[2],x[3],x[4],,],[,,,,,],[1,1/2,-7/4,-11/4,,5/4],[2,1,-2,-4,,2],[4,2,-10,-14,,6]]]"

``

``

``

`Øàã  ¹ 3:  ê ñòðîêå  ¹ 2  ïðèáàâèì ñòðîêó  ¹ 1  , óìíîæåííóþ íà      -2.`

`Ïîëó÷èì:`

``

"[[[x[1],x[2],x[3],x[4],,],[,,,,,],[1,1/2,-7/4,-11/4,,5/4],[0,0,3/2,3/2,,-1/2],[4,2,-10,-14,,6]]]"

``

``

``

`Øàã  ¹ 4:  ê ñòðîêå  ¹ 3  ïðèáàâèì ñòðîêó  ¹ 1  , óìíîæåííóþ íà      -4.`

`Ïîëó÷èì:`

``

"[[[x[1],x[2],x[3],x[4],,],[,,,,,],[1,1/2,-7/4,-11/4,,5/4],[0,0,3/2,3/2,,-1/2],[0,0,-3,-3,,1]]]"

``

``

``

`Øàã  ¹ 5:  ïîìåíÿåì ìåñòàìè ñòîëáåö  ¹ 2  è                ñòîëáåö  ¹ 3.`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],x[2],x[4],,],[,,,,,],[1,-7/4,1/2,-11/4,,5/4],[0,3/2,0,3/2,,-1/2],[0,-3,0,-3,,1]]]"

``

``

``

`Øàã  ¹ 6 : ïîäåëèì âñå ýëåìåíòû ñòðîêè  ¹  2  íà  3/2`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],x[2],x[4],,],[,,,,,],[1,-7/4,1/2,-11/4,,5/4],[0,1,0,1,,-1/3],[0,-3,0,-3,,1]]]"

``

``

``

`Øàã  ¹ 7:  ê ñòðîêå  ¹ 3  ïðèáàâèì ñòðîêó  ¹ 2  , óìíîæåííóþ íà      3.`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],x[2],x[4],,],[,,,,,],[1,-7/4,1/2,-11/4,,5/4],[0,1,0,1,,-1/3],[0,0,0,0,,0]]]"

``

``

``

`Øàã  ¹ 8:  âû÷åðêíåì ñòðîêó  ¹ 3  ò.ê. îíà   ñîñòîèò èç îäíèõ íóëåé`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],x[2],x[4],,],[,,,,,],[1,-7/4,1/2,-11/4,,5/4],[0,1,0,1,,-1/3]]]"

``

``

``

`Øàã  ¹ 9:  âûáåðåì â êà÷åñòâå áàçèñíûõ íåèçâåñòíûå, ñîîòâåòñòâóþùèå ïåðâûì   2   ñòîëáöàì.
  Îñòàëüíûì íåèçâåñòíûì ïðèäà¸ì ïðîèçâîëüíûå çíà÷åíèÿ    ` || (x[2] = C[1]) || (x[4] = C[2]) || ` è ñîîòâåòñòâóþùèå ñëàãàåìûå  ïåðåíîñèì â ïðàâûå ÷àñòè óðàâíåíèé`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],,],[,,,],[1,-7/4,,5/4-1/2 C[1]+11/4 C[2]],[0,1,,-1/3-C[2]]]]"

``

``

``

`Øàã  ¹ 10:  ê ñòðîêå  ¹    1  ïðèáàâèì ñòðîêó  ¹   2  ,  óìíîæåííóþ   íà      7/4.`

`Ïîëó÷èì:`

``

"[[[x[1],x[3],,],[,,,],[1,0,,2/3-1/2 C[1]+C[2]],[0,1,,-1/3-C[2]]]]"

``

``

``

`Îòâåò:`

``

Vector(4, {(1) = x[1] = 2/3-(1/2)*C[1]+C[2], (2) = x[2] = C[1], (3) = x[3] = -1/3-C[2], (4) = x[4] = C[2]})

``

``

``

(2)

 

 

Download Gauss-Jordan.mws

 

It is well known that a square system has a unique solution if and only if it's main determinant is not 0.

restart;

A:= < k+3, 2, k-4, 3;

      0,   2,  -9, 5;

      0,   0, k^2+k-2, k-1 >;

B:=A[..,1..3];

V:=A[..,4];

LinearAlgebra[Determinant](B);

Sol:=[solve(%)];

 

We have a unique solution for any number  k  not included in this list.

 

Next solve separately for each number from  list  Sol:

for i from 1 to 3 do

'k'=Sol[i],  LinearAlgebra[LinearSolve](op(eval([B,V],'k'=Sol[i])), free=C);

od;

 

Thus for  k=-3  and  k=1  we have infinitely many solutions, for  k=-2  no solutions

You made ​​a few syntax errors, which I corrected.
Your nonlinear system has 5 parameters. Maple can not solve it symbolically for all values ​​of the parameters, but Maple can  solve this system for the specified parameters.

restart;

f := proc (E2, T, DHT, Ca, Cshbg)

local KsT, KaT, KsE2, KaE2, KsDHT, KaDHT, eq1, eq2, eq3;

KsT := 0.10e11; KaT := 4.6*0.10e6; KsE2 := 3.14*0.10e10; KaE2 := 4.21*0.10e6; KsDHT := 3*0.10e6; KaDHT := 3.5*0.10e6;

eq1 := E2 = fE2*(1+(KaE2+Ca)/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsE2*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT));

eq2 := T = fT*(1+KaT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT));

eq3 := DHT = fDHT*(1+KaDHT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsDHT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT));

solve({eq1, eq2, eq3})

end proc:

 

Example:

f(1, 2, 3, 4, 5);

 

 

We got 10 solutions.

 

 

First 236 237 238 239 240 241 242 Last Page 238 of 290