Kitonum

21595 Reputation

26 Badges

17 years, 162 days

MaplePrimes Activity


These are answers submitted by Kitonum

Your integral can be easy calculated  numerically, if you set values  ​​n  and  h .

Example:

restart;

eta:=1000: B:=2.5: n:=1: h:=10:

evalf(Int(B*eta^(-B)*t^(B-1)*exp(-(t/eta)^B)*(t-n*h), t = n .. (n+1)*h));

                                          0.0002427195843

The global minimum is obvious without any calculation  f(0,0)=0. Initial point for finding the global maximum is easy to find from the graph:

plot3d(x^2 + y^2 + 25*(sin(x)^2+sin(y)^2), x=-2*Pi .. 2*Pi , y= -2*Pi .. 2*Pi, numpoints=3000);

Optimization[Maximize](x^2 + y^2 + 25*(sin(x)^2+sin(y)^2), initialpoint = {x =5, y=5});

                     [96.2898370467124068, [x = 4.91441834836532454, y = 4.91441834836532454]]

 

 Addition. The problem can be solved without any plots with  DirectSearch package:

DirectSearch[GlobalOptima](x^2 + y^2 + 25*(sin(x)^2+sin(y)^2), {x>=-2*Pi, x<=2*Pi , y>=-2*Pi,y<=2*Pi},maximize);

                           [96.2898370467124, [x = 4.9144183478452, y = -4.9144183485987], 347]

 

This package is available for free download link  http://www.maplesoft.com/applications/view.aspx?SID=101333

 

f:=piecewise(x>0 and x<1,x^2+1, x>1 and x<2,x-x^2, x>2 and x<3,x+1-x^2);

plot(f, x=0..3, discont);

 

 

Your functions  b[n,m]  is easy to construct by a double loop. Procedure  HybrFunc  solves this problem. Functions  b[n,m]  can be called by their names (b - global variable) or as array elements. You have not written what values variable  tj  takes , so I just specify it how procedure argument.

restart;

HybrFunc:=proc(N, M, tj)

local T, n, m;

global b;

for n to N do

for m from 0 to M-1 do

T[m]:=t->t^m;

b[n,m]:=unapply(piecewise(t>=(n-1)*tj/N and t<n*tj/N, T[m](N*t-(n-1)*tj), 0), t);

od; od;

Array(1..N, 0..M-1, (n,m)->b[n,m](t));

end proc:

 

Example:

HybrFunc(3, 4, 10)[3,1];

b[3,2](t);

 

 

restart;

sort(x+y+z, [x, y, z], ascending);

                     z+y+x

restart: 

Mf(x):=piecewise(x<=L/2,1/2*x*F,x>1/2*L,1/2*x*F-F*(x-1/2*L)): 

eq[1]:=Mf(xi)*F*L=Mf(x): 

Mf(xi):=simplify(convert(solve(eq[1],Mf(xi)), piecewise,x)); 

Mf(xi):=subs(x=xi*L,Mf(xi)); 

Mf(xi):=simplify(Mf(xi)) assuming F>0, L>0;

 

plot(x^2, x=-1..2, tickmarks=[0,0]);

 

 

f := int((A*sin(omega*t+phi)-B*sin(omega*t))^2, t):

g := int((A*sin(omega*t)*cos(phi)+A*cos(omega*t)*sin(phi)-B*sin(omega*t))^2, t):

delta=simplify(expand(f)-expand(g));  # Difference between f and g 

 

We see that the difference between  f  and   does not depend on  t, so there is no contradiction.

ex := taylor(exp(x), x = 0, 5);

eval(ex, x=1);

subs(x=1, convert(ex, polynom));

A:=Matrix(3,2, symbol=a):

B:=Matrix(2,3, symbol=b):

C:=Matrix([[8, 2, -2], [2, 5, 4], [-2, 4, 5]]):

simplify(B.A, {seq(seq((A.B)[i,j]=C[i,j], j=1..3), i=1..3)});

 

 

mahmood180, I tried to upload your file, but the 404 error appeared.

Look at my solution:

restart;

SpecialMatrix := proc (A::list)

local r, a, b, A1, A2, a1, a2; 

r := (1/2)*nops(A)-1/2;

assign(seq(a[i-1] = A[i], i = 1 .. r+1), seq(b[i] = A[r+1+i], i = 1 .. r));

A1[1, 1] := Matrix(1, {(1, 1) = 2*a[0]});

A1[1, 2] := Matrix([[seq(a[i], i = 1 .. r)]]);

A1[1, 3] := Matrix([[seq(b[i], i = 1 .. r)]]); A1[2, 1] := A1[1, 2]^%T;

A1[2, 2] := Matrix(r, {seq(seq((i, j) = a[j-i], j = i+1 .. r), i = 1 .. r-1), seq((i, i) = 2*a[0], i = 1 .. r)}, shape = symmetric);

A1[2, 3] := Matrix(r, {seq(seq((i, j) = b[j-i], j = i+1 .. r), i = 1 .. r-1), seq((i, i) = 0, i = 1 .. r)}, shape = antisymmetric);

A1[3, 1] := A1[1, 3]^%T; A1[3, 2] := -A1[2, 3]; A1[3, 3] := A1[2, 2];

a1 := `<,>`(seq(`<|>`(A1[i, 1], A1[i, 2], A1[i, 3]), i = 1 .. 3)); 

A2[1, 1] := Matrix(1);

A2[1, 2] := A1[1, 2];

A2[1, 3] := A1[1, 3];

A2[2, 1] := Matrix(r, 1);

A2[2, 2] := Matrix(r,{seq(seq((i, j) = a[i+j], j = 1 .. r-i), i = 1 .. r-1)});

A2[2, 3] := Matrix(r,{seq(seq((i, j) = b[i+j], j = 1 .. r-i), i = 1 .. r-1)});

A2[3, 1] := A2[2, 1]; A2[3, 2] := A2[2, 3]; A2[3, 3] := -A2[2, 2];

a2 := `<,>`(seq(`<|>`(A2[i, 1], A2[i, 2], A2[i, 3]), i = 1 .. 3)); 

(1/2)*a1+(1/2)*a2; 

end proc:

 

Example for r=4:

SpecialMatrix([seq(a[i], i = 0 .. 4), seq(a[i]^`&lowast;`, i = 1 .. 4)]);

SymmetricSum:=proc(S::{list,set}, P::list)

local L;

uses combinat;

if nops(S)<>nops(P) then error "Should be nops(S)=nops(P)" fi;

L:=permute(P);

add(mul(S[i]^l[i], i=1..nops(S)), l=L);

end proc;

 

CyclicSum:=proc(S::list, P::list)

local n, L0, L;

if nops(S)<>nops(P) then error "Should be nops(S)=nops(P)" fi;

n:=nops(P);

L0:=[op(P),op(P)]; L:=[seq([seq(L0[i+j], j=0..n-1)],i=1..n)];

add(mul(S[i]^l[i], i=1..nops(S)), l=L);

end proc:

 

Examples:

SymmetricSum([x,y,z], [2,3,5]);

CyclicSum([x,y,z,u], [2,3,4,5]);

 

 

Formal parameters:  L - the list of your functions  psi ,  m - a symbol or a number,  M - a positive integer.

 

MMatrix := proc (L::list, m, M::posint)

Matrix(M, [seq([seq(L[i]((1/2)*(2*j-1)/m), j = 1 .. M)], i = 1 .. M)]);

end proc:

 

Example:

MMatrix([seq(psi[1, i], i = 0 .. 4)], 10, 5);

 

Of course instead of arbitrary functions psi, you can write as the entries of the list L your specific functions.

 

Another way of filling the interior of the cardioid used. It is based on an approximation by polygons. The same method was used in my procedure Picture. See  http://www.mapleprimes.com/posts/145922-Perimeter-Area-And-Visualization-Of-A-Plane-Figure-

restart;

N := 120:

r := 2-2*sin(2*Pi*k/N):

L := [[0, 0], seq([r*cos(2*Pi*k/N), r*sin(2*Pi*k/N)], k = 0 .. N)]:

A := seq(plottools[polygon](L[1 .. n], color = cyan), n = 2 .. N+2):

B := seq(plottools[curve](L[2 .. n], color = black, thickness = 3), n = 2 .. N+2):

l := plottools[line]([0, 0], [2, 0], color = cyan, thickness = 4):

C := seq(plots[display](l, A[i], B[i]), i = 1 .. N+1):

plots[display](C, insequence = true, axiscoordinates = polar, scaling = constrained);

 

tmp:=[[0, 1, 2], [1, 0, 2], [1, 1, 2], [1, 2, 0]];

select(x->is(`+`(op(x))=3), tmp);

                            tmp := [[0, 1, 2], [1, 0, 2], [1, 1, 2], [1, 2, 0]]

                                       [[0, 1, 2], [1, 0, 2], [1, 2, 0]]

 

First 243 244 245 246 247 248 249 Last Page 245 of 290