Kitonum

21595 Reputation

26 Badges

17 years, 162 days

MaplePrimes Activity


These are answers submitted by Kitonum

n1:=1: n3:=0.3:

f:=n2->fsolve({T= n1/(1+abs(T-S)), S=n2/(n3+abs(T-S))}):

plot(['eval(T, f(n2))', 'eval(S, f(n2))'], n2=0.5..3, color=[red, blue], numpoints=1000);

Replace  e^(-1.5*t)  by  exp(-1.5*t) :

 

A:=Int(exp(-1.5*t)/sqrt(t*(t+1)), t = 1 .. infinity);

evalf(A);

 

 

In the procedure  the standard algorithm was used for an even number of participants. See  http://en.wikipedia.org/wiki/Round-robin_tournament  .

Schedule:=proc(n::even)

local L, k, i;

if n=4 then L:=[[[1,4],[2,3]], [[1,3],[4,2]], [[1,2],[3,4]]] else

L[1]:=[seq([i,n-i+1], i=1..n/2)];

for k from 2 to n-1 do

L[k]:=[[1,L[k-1][2,2]], [L[k-1][1,2],L[k-1][3,2]], seq([L[k-1][i,1],L[k-1][i+2,2]], i=2..n/2-2), [L[k-1][n/2-1,1],L[k-1][n/2,1]]];

od; fi;

for i to n-1 do

print([seq(convert(L[i][j],set), j=1..n/2)]);

od;

end: 

 

Example for n=16:

Schedule(16);

 

 

The following code solves the logic problem for sorts of sports.  Solution of the problem of the composition of departments used in this code:

restart;

Names:=[Alex, Betty, Carol, Dan, Earl, Fay, George, Harry]:

Sports:=[football, cricket, volleyball, badminton, lawn_tennis, basketball, hockey, table_tennis]:

Variants:=combinat[permute](Sports):

Terms:='[Dan<>football, Dan<>cricket, Alex=table_tennis, Carol=hockey, George<>cricket, George<>badminton, 'Dan=football or Betty=football or Carol=football', 'Fay=volleyball or Alex=volleyball', Dan<>badminton, Dan<>lawn_tennis, Betty<>badminton, Betty<>lawn_tennis, Carol<>badminton, Carol<>lawn_tennis, Harry<>cricket]':

Solutions:=[]:

for variant in Variants do

if convert(subs([seq(Names[i]=variant[i], i=1..8)], Terms), `and`) then Solutions:=[op(Solutions), variant] fi:

od:

seq(Names[i]=op(Solutions)[i], i=1..8);

This equation has five (real or complex) roots, which Maple can not find in radicals. 

RootOf(20+60Z+335Z2+825Z3+1629Z4+2520Z5, index=3)  is the third root of this list.

You have assigned the name  с  to  a + b , and not vice versa.

Solution the problem:

restart;

algsubs(a+b=c, [a+b+2, a+2+b, b+2+a]);

                         [c+2, c+2, c+2]

 

Here is the solution of the logic problem for composition of departments:

restart;

Names:={Alex, Betty, Carol, Dan, Earl, Fay, George, Harry}:

A:=combinat[choose](Names, 3):

L:=[]:

for i in A do

B:=combinat[choose](Names minus i, 3);

for j in B do

L:=[op(L), [i, j, (Names minus i) minus j]];

od: od:

Organization:={seq(op(combinat[permute](L[k])), k=1..nops(L))}:

Terms:=[Dan in Administration, Fay in Personnel, Alex in Personnel, 'nops(Personnel)=2', not(Earl in Administration), not(Harry in Administration), not(Carol in Marketing), not(George in Administration)]:

Departments:=[]:

for variant in Organization do

Personnel:=variant[1]: Administration:=variant[2]: Marketing:=variant[3]:

if convert(Terms, `and`) then Departments:=[op(Departments), variant]; fi;

od:

op(Departments);

                           [{Fay, Alex}, {Dan, Betty, Carol}, {Earl, George, Harry}]

 

Thus we have the unique solution:

Personnel={Fay, Alex},  Administration={Dan, Betty, Carol},  Marketing={Earl, George, Harry}

Similarly, we can find the distribution of sorts of sport.

 

In fact, there is no error, because  cos  function is even, ie  cos(-x) = cos(x). If you do not confuse the extra parentheses, you can write:

cos(``(Phi1(x)-psi));

 

If further transformations are not planned, you can just write:

cos(``*Phi1(x)-psi);

 

 

Replace simplify by  radnormal .

Procedure  Horner  using Horner's method calculates the value of the polynomial  P  in the point  x0 :

restart;

Horner:=proc(P::polynom, x0::realcons)

local n, x, b, i, a;

n:=degree(P); x:=op(indets(P));

assign(seq(a[k]=coeff(P, x, k), k=0..n)); b:=a[n];

for i from n-1 by -1 to 0 do

b:=a[i]+b*x0;

od;

b;

end;

 

Example:

Horner(x^3-5*x^2-3*x+4, 3);

                   -23

Example:

f:=unapply(expand(sum((x1+x2+x3)^i, i=1..5)), x1,x2,x3);

f(a,b,c);

restart;

sol := solve([sin(a)-sin(b) = 0, b >= 0, b < 2*Pi], b, allsolutions, explicit);

seq(eval(op(sol[i]), op(`minus`(indets(sol[i]), {a, b})) = 0), i = 1 .. 2);

 

 Addition:  if instead of   specific angle to write, there is no problem.

restart;

solve({sin(Pi/6)-sin(b) = 0, b>=0, b<2*Pi}, b, allsolutions, explicit);

 

 

You can just use  simplify  command. For a more substantial simplification seems to be  specified numerical values ​​to all constants.

simplify(dsolve({ODE,bcs}));

SeqInColumn:=proc(S)

local i;

for i to nargs-1 do

print(args[i], ``);

od;

args[nargs];

end:

 

Your example:

B := b=2:

C := c=3:

A := B, C:

SeqInColumn(A);

                b=2,
                 c=3

Your example:

restart;

eq:=f(x)=1+x*f(x)^2;

f(x):=a+b*x+c*x^2+d*x^3;

expand(eq);

sys:={seq(coeff(lhs(eq), x, k)=coeff(rhs(eq), x, k), k=0..3)};

solve(sys);

 

 

First 247 248 249 250 251 252 253 Last Page 249 of 290