Kitonum

21595 Reputation

26 Badges

17 years, 161 days

MaplePrimes Activity


These are answers submitted by Kitonum

Maple does not solve your system, but just repeats the input. He always does this when the system is inconsistent.

Example:

fsolve({x^2+y^2=-1, x+y=1});

               fsolve({x+y = 1, x^2+y^2 = -1},{x, y})

 

Mathematica explicitly says that the system is inconsistent:

In[1]:= NSolve[{(-(1/((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p))))*((0.002 + 0.001)*
Sin[-0.39] - (0.001 + 1*(e + p))*
Cos[-0.39]*(e*(-m + (0.68/d) + (0.599/g)) +
j*m) - (1/((0.002 + 0.001)^2 + (0.001 +
1*(e + p))*(0.001 + 1*(j + p))))*((0.001 + 1*(j + p))*
Sin[-0.39] - (0.002 + 0.001)*
Cos[-0.39])*(j*(-n + (0/i) + (-0.73/l)) +
e*n)))/(2*10) == -0.12, (-((0.002 + 0.001))*
e/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*d)*(e*(-m + (0.68/d) + (0.599/g)) +
j*m) - ((0.001 + 1*(j + p))*
e)/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*d)*(j*(-n + (-0.73/l)) + e*n) + (e*n)/
d)/(2*10) == -0.069, (-((0.002 + 0.001))*
e/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*g)*(e*(-m + (0.68/d) + (0.599/g)) +
j*m) - ((0.001 + 1*(j + p))*
e)/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*g)*(j*(-n + (-0.73/l)) + e*n) + (e*n)/
g)/(2*10) == -0.079, (-(0.001 + 1*(e + p))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*i)*(e*(-m + (0.68/d) + (0.599/g)) +
j*m) - (-(0.002 + 0.001))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*i)*(j*(-n + (-0.73/l)) + e*n) - (j*m)/
i)/(2*10) == -0.003, (-(0.001 + 1*(e + p))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*l)*(e*(-m + (0.68/d) + (0.599/g)) +
j*m) - (-(0.002 + 0.001))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*l)*(j*(-n + (-0.73/l)) + e*n) - (j*m)/
l)/(2*10) == -0.023, -(1*
c*(1/((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p))))*((0.001 + 1*(j + p))*
Sin[-0.39] - (0.002 + 0.001)*Cos[-0.39])*e)/
d == -0.109, -(1*c*(-(0.002 + 0.001))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*i)*e)/d ==
0.0003, -(1*
f*(1/((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p))))*((0.001 + 1*(j + p))*
Sin[-0.39] - (0.002 + 0.001)*Cos[-0.39])*e)/
g == -4.928, -(1*f*(-(0.002 + 0.001))*
j/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*l)*e)/g ==
0.013, -(1*
h*(1/((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p))))*((0.002 + 0.001)*
Sin[-0.39] - (0.001 + 1*(e + p))*Cos[-0.39])*j)/
i == -0.058, -(1*h*((0.002 + 0.001))*
e/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*d)*j)/
i == -0.0005, -(1*
k*(1/((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p))))*((0.002 + 0.001)*
Sin[-0.39] - (0.001 + 1*(e + p))*Cos[-0.39])*j)/
l == -1.39, -(1*k*((0.002 + 0.001))*
e/(((0.002 + 0.001)^2 + (0.001 + 1*(e + p))*(0.001 +
1*(j + p)))*d)*j)/l == -0.011}, {c, d, e, f, g, h, i,
j, k, l, m, n, p}]

Out[1] = {}

 

 

 

 

Easier to solve your problem by  dsolve  command.

 

Finding  f(x)  and construction of the function  f :

restart;

g(x):=1/(1+cot(x)):

dsolve({diff(f(x), x)= g(x), f(Pi/4)=1}, f(x));

assign(%);

f:=unapply(f(x), x);

 

Checking:

f(Pi/4);

is(diff(f(x), x)=g(x));

                               1

                             true

 

 

Should be:

area:=proc(T::list(list))

1/2*abs(T[1,1]*(T[2,2]-T[3,2])+T[2,1]*(T[3,2]-T[1,2])+T[3,1]*(T[1,2]-T[2,2]));

end proc:

 

Examples:

 

T1:=[[x1,y1], [x2,y2], [x3,y3]]:

T2:=[[0,0], [1,2], [3,0]]:

area(T1);

area(T2);

 

 

Using  Vieta's formulars:

simplify((a+b)^3+(b+c)^3+(c+a)^3, {a+b+c=0, a*b+a*c+b*c=2013/2012, a*b*c=-2014/2012});

                              3021
                              ------
                              1006

 

It can be solved by hand if to use the identity

 (a+b)^3 + (b+c)^3 + (c+a)^3 = -3* a* b* c + 2* (a + b + c)^3 - 3* (a + b + c)* (a *b + a* c + b* c)

A straight line in the plane can be defined by its equation or two points through which it passes, rather than  a vector. The procedure  ISC  solves your problem.

 

ISC:=proc(T, Eq)  # T -  list of vertices of the triangle, Eq - equation of the line

local f;

f:=unapply(lhs(Eq)-rhs(Eq), op(indets(Eq)));

if not (convert([seq(f(op(T[i]))<0, i=1..3)], `and`) or

convert([seq(f(op(T[i]))>0, i=1..3)], `and`)) then true  else false  fi;

end proc:

 

Examples:

ISC([[0,0],[10,10],[10,0]], x+y=-1);

ISC([[0,0],[10,10],[10,0]], x+y=1);

                          false

                          true

If you want  Maple considers  I  as a symbol rather than imaginary unit, surround  I in command lines by oblique quotes. In the output  this is not visible.

restart;

K:=sin(2*a)*sin(2*b)/(sin(a)*2*cos*(b)^2+cos(a)^2*sin(b)^2+`I`[ex]/`I`[tr]):

r:=`I`[ex]/`I`[tr];

subs(`I`[ex]=`I`[tr]*'r', K);

 

 

 

restart;

expr:=4*sin(a)*cos(b)*cos(a)*sin(b):

applyrule(sin(x::symbol)=sin(2*x)/2/cos(x), expr);

                       sin(2*a)*sin(2*b)

Instead  plot(x^(2/3), x=-1..1);  write  plot((x^2)^(1/3), x=-1..1);

By default, Maple operates in the complex domain and a value, such as  (-8) ^ (2/3),  it considers  as  ((-8) ^ (1/3)) ^ 2 = (1 + sqrt (3) * I)^2  rather than  ((-8) ^ (1/3)) ^ 2 = (-2)^2 =4  because of 3 complex values  (-8) ^ (1/3)  Maple returns the value with smallest argument. 

simplify(8^(2/3));

            4

convert((1/2)*Pi, degrees);

               90*degrees

int(abs(x-2), x);

plot(%, x=-1..5);

 

 

restart;

 

a := miu1(t) = diff(lambda1(t),t) + lambda3(t):

b := miu2(t) = diff(lambda2(t),t) + lambda1(t) - 4*lambda3(t):

c := miu3(t) = diff(lambda3(t),t) + lambda2(t) - 3*lambda3(t):

d := miu(t) = 2*diff(lambda3(t),t$2) - 5*diff(lambda3(t),t) + 7*lambda3(t):

e:=diff(c, t):

 

S:=subs({diff(lambda1(t),t)=A,diff(lambda2(t),t)=B,diff(lambda3(t),t)=C,

diff(lambda3(t),t,t)=E}, {a,b,c,d,e}):

eliminate(S, {A,B,C,E});

op(%[2])/5;

 

 

I also don't understand the Question 2.

There are different ways to solve this problem. For example, it is a sequence of digits after the decimal point in the expansion of the fraction  248590/1369863  to decimal fraction:

evalf[48](248590/1369863);

                         0.181470701814707018147070181470701814707018147070

restart;

ys := [1.8*a+.4000000000*b+103.9*c-.5000000000*e-102.6*g = 0, .5000000000*b+102.6*c+.3*d+.3500000000*e-102.1*g = 0, -3.3*a-1.050000000*b+102.4*c+.7*d+.2500000000*e-105.1*g = 0, -2.5*a+1.450000000*b+102.6*c+3.3*d+1.050000000*e-102.4*g = 0, -1.6*a+1.100000000*b+105.8*c+.3*d+1.750000000*e-105.5*g = 0, -.7*a-.2500000000*b+105.1*c-.2*d+.2000000000*e-105.7*g = 0, -.3*a-.3500000000*b+102.1*c+2.5*d-1.450000000*e-102.6*g = 0, .2*a-.2000000000*b+105.7*c+1.6*d-1.100000000*e-105.8*g = 0]:

B := [a, b, c, d, e, g]:

A:=Matrix([seq([seq(coeff(lhs(ys[i]), B[j]), j=1..nops(B))], i=1..nops(ys))]);

 

 

Your system has infinitely many solutions, depending on two parameters  a  and  g .

The decision with checking:

sys:=[1.8*a+.4000000000*b+103.9*c-.5000000000*e-102.6*g = 0, .5000000000*b+102.6*c+.3*d+.3500000000*e-102.1*g = 0, -.3*a-.3500000000*b+102.1*c+2.5*d-1.450000000*e-102.6*g = 0, -2.5*a+1.450000000*b+102.6*c+3.3*d+1.050000000*e-102.4*g = 0, -3.3*a-1.050000000*b+102.4*c+.7*d+.2500000000*e-105.1*g = 0, -.7*a-.2500000000*b+105.1*c-.2*d+.2000000000*e-105.7*g = 0]:

sol:=solve(sys);

eval(sys, sol);

 

 

First 257 258 259 260 261 262 263 Last Page 259 of 290