Kitonum

21530 Reputation

26 Badges

17 years, 82 days

MaplePrimes Activity


These are answers submitted by Kitonum

In Maple 2018.2, you get the expected result. Of course, formally it will only be a right-sided derivative (as indicated by vv). The code is much shorter if you notice that your function is just  ln(2+5*t)  for  t>=0  and use the differentiate operator  D :

eval(diff(ln(piecewise(t=0,2,2+5*t)),t), t=0);
D(t->ln(2+5*t))(0);

                                               5/2
                                               5/2

The following works as expected:

restart;
B := x^4 - 4*x^3/(2 + p) - 6*(p - 1)*x^2/((3 + p)*(2 + p)) - 4*p*(p - 5)*x/((4 + p)*(3 + p)*(2 + p)) - (p - 1)*(p^2 - 15*p - 4)/((5 + p)*(4 + p)*(3 + p)*(2 + p));
for p from -1 to 5000 do
    A[p] := fsolve(B, x, complex);
end do:
ptlist := convert(A,list):
plots:-complexplot(ptlist, x = -1 .. 1.5, y = -0.5 .. 0.5, style = point);

 

It is well known that most of the differential equations cannot be solved symbolically, only numerically. To do this, you must provide an initial condition and use the  numeric  option.

Example:

restart;
Sol:=dsolve({diff(y(x), x) = (6*y(x)^5 - 3*y(x)*x^2 - 20*y(x)^3*x)/(-4*x^3 + 30*y(x)^2*x^2 - 30*y(x)^4 + 7*y(x)^6), y(0)=1}, y(x), numeric);
plots:-odeplot(Sol, [x,y(x)], x=0..1, color=red);

                                            Sol:=proc(x_rkf45) ... end proc
                               

 

Example:

restart;
plots:-polarplot(cos(3*phi*Pi/180), phi=0..360, angularunit=degrees);

                      

 

The problem is easily reduced to solving the equation in integers:

restart;
isolve(5*x-7=16*y);

                 {x = 11+16*_Z1, y = 3+5*_Z1}


So  x = 11+16*_Z1  is the set of all the solutions,  _Z1  is an integer.

First you must specify  ma1  as a list:

ma1 := [0., .1941703021, .3203871063, .4089371834, .4712881303, .5145114133, .5435036431, .5617715009, .5718586242, .5756277760, .5744585726]:

subs(ma1[1]=1,ma1);
# Or
subsop(1=1,ma1);

[1, 0.1941703021, 0.3203871063, 0.4089371834, 0.4712881303, 0.5145114133, 0.5435036431, 0.5617715009, 0.5718586242, 0.5756277760, 0.5744585726]
[1, 0.1941703021, 0.3203871063, 0.4089371834, 0.4712881303, 0.5145114133, 0.5435036431, 0.5617715009, 0.5718586242, 0.5756277760, 0.5744585726]

 

Use the  fieldplot  command from the  plots  package. The grid option controls the number of arrows:

fieldplot(<a, b>, x = -100 .. 100, y = -100 .. 100, arrows = SLIM, grid = [10, 10]);

               

 

 

You can use the combinat:-partition command and then the  select  command to remove duplicate parts:

combinat:-partition(15,8):
select(t->nops(t)=nops({t[]}), %);

[[1, 2, 3, 4, 5], [2, 3, 4, 6], [1, 3, 5, 6], [4, 5, 6], [1, 3, 4, 7], [1, 2, 5, 7], [3, 5, 7], [2, 6, 7], [1, 2, 4, 8], [3, 4, 8], [2, 5, 8], [1, 6, 8], [7, 8]]

restart; 
f:=x->x^2-x+3:
g:=x->3*x-5:
solve(f(x)>=0 or f(x)<0);  # Finding the domain of the function f(x)
h:=f-g:
# Finding the range of the h(x)
m:=minimize(h(x), x=-infinity..infinity);
M:=maximize(h(x), x=-infinity..infinity);

                                            

So we have:  (-infinity, infinity)  is the domain of  f(x)[4, infinity)  is the range of  h(x) . Here we use the continuity of the function  h(x)  that takes all intermediate values between  and  M .

 

Use the  seq  command for this.
An example:

restart;
n:=7:
assign(seq(a[i]=i, i=1..n));
P:=piecewise(x<a[1],x, seq(op([x<a[k],(-1)^k*sqrt(0.5^2-(x-(k-0.5))^2)+1]),k=2..n), 1);
plot(P, x=-1..n+2, view=[-1..n+2,-1..2], scaling=constrained, size=[800,400]);

            

      

 

 

You can extract data from a plot using the  plottools:-getdata  command. The data is retrieved as a two-column matrix. See a simple example below:

restart;
plot([y^2,y, y=-1..1]);
plottools:-getdata(%);
%[3][1..10];

 

The integral must be introduced in the inert form:

restart;
A:=Int(exp(-4*tau)*sin(2*tau)/2, tau=0..t);
Student:-Calculus1:-ShowSolution(A);

Download Int.mw

It can be written much shorter using arrow-notation. We see that Maple finds this sum symbolically in a closed form. For large numbers N , this is much more efficient:

restart;
sum2N:=N->sum((N+k)^2, k=0..N);

# Examples
sum2N(N);
sum2N(10);

                

 

Alternative :

[seq(rhs~(t)[],t=[a])];

                  [-23, -12, -34, 87, 18, 98, 27, 93, 45, 68]

restart;
Sys := Y(t)=diff(y(t),t,t), diff(y(t), t, t)+y(t)*abs(y(t)) = 0; 
ic1 := y(0) = 1, D(y)(0) = 0; 
dsol1 := dsolve({Sys, ic1}, numeric, range = 0 .. 10);
plots:-odeplot(dsol1,[t,y(t)]); 
plots:-odeplot(dsol1, [t,diff(y(t),t)]);
plots:-odeplot(dsol1, [t,Y(t)]);

 

First 32 33 34 35 36 37 38 Last Page 34 of 290