Kitonum

21595 Reputation

26 Badges

17 years, 163 days

MaplePrimes Activity


These are answers submitted by Kitonum

To extract single entries or entire rows or columns use square brackets instead of parantheses:

restart;
A:=Matrix([[1,2],[3,4]]);
A[1,..];
whattype(%);
A[..,1];
whattype(%);


For rows  A[1,..] = A[1]  and so on.

It looks like

restart;
f:=(x,t)->sqrt(2)*exp(-0.6*(0.5*x+0.01*t)^2):
plot([f(x,0),f(x,20),f(x,40)], x=-10..10, color=[yellow,black,blue], thickness=3, size=[900,500]);

                                

 

What 2 lines did you mean? In the plot from your worksheet, I see only one straight line and 2 coordinate axes.
General advice: to find the intersection point of two lines  F(x,y) = 0  and  G(x,y) = 0 , solve the system

solve({ F(x,y) = 0,  G(x,y) = 0}, {x,y});


Edit. Sorry, I didn't notice your second plot right away. So do as Carl wrote or just

restart;
solve({y=5*x-1, y=-x+7});

                                   

restart; 
P := 2^n-1: 
select(isprime, [seq(eval(P, n = k), k = 1 .. 100)]);

  [3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111]

Edit. If you do not need prime numbers of the form  P  themselves, but exponents  n , then below is another code:

restart; 
P := 2^n-1: 
select(p->isprime(eval(P, n=p)), [$1..100]);

                 [2, 3, 5, 7, 13, 17, 19, 31, 61, 89]

restart;
a:=3: R:=7: z:=sqrt(R^2-(r-a+R)^2):
plot3d([[r,phi,z],[r,phi,-z]], phi=0..2*Pi, r=2..3, coords=cylindrical, scaling=constrained);

                               


The formula  sqrt(R^2-(r-a+R)^2)  was obtained by elimination  phi  from the system  { z=R*cos(phi), r=a-R*(1-sin(phi))

Edit. I added the option  scaling=constrained so that you can watch the form change depending on the parameters change.

 

 

In my opinion the simplest way is to use a triple for-loop:

restart;
C := y^2*z + y*z^2 = x^2:
for x in {0,1} do
for y in {0,1} do
for z in {0,1} do
if C then print(['x','y','z']=[x,y,z]) fi;
od: od: od:

                                      

 

To plot a 3-variable equation, you must use  plots:-implicitplot3d  command. To get the best quality we can first express  z  through  x  and  y and then plot:

restart;
eq:= x^2-y^2*z-y*z^2;
plots:-implicitplot3d(eq,x=0..1,y=0..1,z=-7..7, style=surface, grid=[40,40,40]);
solve(eq, z);
plot3d([%], x=0..1,y=0..1, style=surface);


Edit. A more interesting picture is obtained if we increase the ranges for  x  and  yx=-1..1, y=-1..1. It is worth noting one drawback of  plot3d  command in this example: Maple does not draw a surface near z-axis. This is due to the fact that for small values of  y , the value of  z  tends to infinity. The use of  plots:-implicitplot3d  command does not have this drawback. We get good quality when used together  plot3d  and  plots:-implicitplot3d :

restart;
eq:= x^2-y^2*z-y*z^2;
A:=plots:-implicitplot3d(eq,x=-1..1,y=-1..0.01,z=-5..5, style=surface, grid=[50,100,50]):
Sol:=solve(eq, z);
B:=plot3d([Sol], x=-1..1,y=-1..1, view=-5..5, style=surface, axes=normal, grid=[500,500]):
plots:-display(A,B, view=[-1..1,-1..1.2,-5..5]);

                       

Let's help Maple a little. If  t^2 - 4 = s^2 - 4  and  t<>s  then  s = -t . Below we get that there will be infinitely many double points:

restart;
x:=t->sin(t): y:=t->t^2-4:
solve({sin(t)=sin(s),s=-t}, AllSolutions);
eval(%, _Z1=k);
[x,y]=eval([x(t),y(t)], %) assuming k::posint;  # All the double points
# k = 1, 2, 3, ...

                               [x, y] = [0, Pi^2*k^2-4]


The numerical solution:

restart;
x:=t->sin(t): y:=t->t^2-4:
Sys:=[x(t)=x(s),y(t)=y(s)]:
plots:-implicitplot(Sys, t=-10..10,s=-10..10, color=[red,blue], gridrefine=3);
fsolve(Sys, {t=-4..-1,s=1..4});
fnormal(eval([x(t),y(t)], %));

                                    [0., 5.869604404]

Because there are many solutions, then the plot is needed to isolate the root.

With local, you made a new name (it's not clear why?) from the command  pdetest . Just replace the line local pdetest := (ans, de1)  with the line  test := pdetest(ans, de1)

restart;
did:=D^14+23*D^13+144*D^12-30*D^11;
subsindets(did,symbol^integer,t->(D@@degree(t))(y)(x));
convert(%, diff);

            

 

 

 

You can use a common  if ... fi:  for this:

restart;
str:="A";
x:=10;
if x=10 then str:=cat(str," it was 10"); x:=11 else
str:=cat(str," it was not 10"); x:=9 fi;


Edit.

See help on the  evala  command. Also the  Algebraic  package may be useful for you.

You forgot to call the package  plots . Insert  with(plots):  at the beginning of your worksheet.

Replace in the code the dot  .  with the multiplication sign  * .

The corrected file 

test1_03_new.mw

The error you receive says that Maple does not have the  FourierSeries  package.

You can freely download the  OrthogonalExpansions  package from the Maple Application Center. This package contains a number of commands for working with Fourier series.

https://www.maplesoft.com/applications/view.aspx?SID=33406

First 37 38 39 40 41 42 43 Last Page 39 of 290