Kitonum

21530 Reputation

26 Badges

17 years, 83 days

MaplePrimes Activity


These are answers submitted by Kitonum

I think that it will be interesting for you to get the law of distribution of the number of points when throwing  n dices. In other words, it is necessary to find the probability that when throwing  n dice the sum of points will be equal to  S  for any possible S . For this we can use the procedure  Composition . Details on the use of this procedure can be found here.

Composition := proc (n::nonnegint, k::posint, res::{range, nonnegint} := 0)
local a, b, It, L0; 
if res::nonnegint then a := res; b := n-(k-1)*a  else a := lhs(res); b := rhs(res) fi;
if b < a or b*k < n then return `No solutions` fi; 
It := proc (L)
local m, j, P, R, i, N;
m := nops(L[1]); j := k-m; N := 0;
for i to nops(L) do
R := n-`+`(op(L[i]));
if R <= b*j and a*j <= R then N := N+1;
P[N] := [seq([op(L[i]), s], s = max(a, R-b*(j-1)) .. min(R, b))] fi;
od;
[seq(op(P[s]), s = 1 .. N)];
end proc;
L0 := [[]];
(It@@k)(L0); 
end proc:


Example of use - find all the ways to get a total of 12 points when throwing 3 dice:

Composition(12, 3, 1..6);
nops(%);      

   [[1, 5, 6], [1, 6, 5], [2, 4, 6], [2, 5, 5], [2, 6, 4], [3, 3, 6], [3, 4, 5], [3, 5, 4], [3, 6, 3], [4, 2, 6], [4, 3, 5], [4, 4, 4], [4, 5, 3], [4, 6, 2], [5, 1, 6], [5, 2, 5], [5, 3, 4], [5, 4, 3], [5, 5, 2], [5, 6, 1], [6, 1, 5], [6, 2, 4], [6, 3, 3], [6, 4, 2], [6, 5, 1]]
                                                                     25

In the example below we obtain the law of distribution of the amount of points when rolling 4 dice :

n:=4:
# Probabilities
P:=[seq([S,nops(Composition(S,n,1..6))/6^n], S=n..6*n)];
# Check
add(P[k,2], k=1..nops(P));

     
            

Edit.

      

Your integral equation has the exact solution  u(x)=1+3/4*x . The solution using the trapezoid rule for  N=100  gives a pretty good approximation:


 

restart;
Eq:=u(x) = 1+int(x*t*u(t), t = 0 .. 1);
u:=x->1+3/4*x;
Eq;  # Check of exact solution

u(x) = 1+int(x*t*u(t), t = 0 .. 1)

 

proc (x) options operator, arrow; 1+(3/4)*x end proc

 

1+(3/4)*x = 1+(3/4)*x

(1)

restart;
N:=100:
u[0]:=1.:
X:=[seq(1/N*k, k=1..N)]:
x[0]:=0.:
assign(seq(x[i]=X[i], i=1..N)):
h:=1/N:
Sys:={seq(u[k]=1+add((x[k]*x[i-1]*u[i-1]+x[k]*x[i]*u[i])/2*h, i=1..N), k=1..N)}:

Sol:=solve(Sys);

{u[1] = 1.007500188, u[2] = 1.015000375, u[3] = 1.022500563, u[4] = 1.030000750, u[5] = 1.037500938, u[6] = 1.045001125, u[7] = 1.052501313, u[8] = 1.060001500, u[9] = 1.067501688, u[10] = 1.075001875, u[11] = 1.082502063, u[12] = 1.090002250, u[13] = 1.097502438, u[14] = 1.105002625, u[15] = 1.112502813, u[16] = 1.120003000, u[17] = 1.127503188, u[18] = 1.135003375, u[19] = 1.142503563, u[20] = 1.150003750, u[21] = 1.157503938, u[22] = 1.165004125, u[23] = 1.172504313, u[24] = 1.180004500, u[25] = 1.187504688, u[26] = 1.195004875, u[27] = 1.202505063, u[28] = 1.210005250, u[29] = 1.217505438, u[30] = 1.225005625, u[31] = 1.232505813, u[32] = 1.240006000, u[33] = 1.247506188, u[34] = 1.255006375, u[35] = 1.262506563, u[36] = 1.270006750, u[37] = 1.277506938, u[38] = 1.285007125, u[39] = 1.292507313, u[40] = 1.300007500, u[41] = 1.307507688, u[42] = 1.315007875, u[43] = 1.322508063, u[44] = 1.330008250, u[45] = 1.337508438, u[46] = 1.345008625, u[47] = 1.352508813, u[48] = 1.360009000, u[49] = 1.367509188, u[50] = 1.375009375, u[51] = 1.382509563, u[52] = 1.390009750, u[53] = 1.397509938, u[54] = 1.405010125, u[55] = 1.412510313, u[56] = 1.420010500, u[57] = 1.427510688, u[58] = 1.435010875, u[59] = 1.442511063, u[60] = 1.450011250, u[61] = 1.457511438, u[62] = 1.465011625, u[63] = 1.472511813, u[64] = 1.480012000, u[65] = 1.487512188, u[66] = 1.495012375, u[67] = 1.502512563, u[68] = 1.510012750, u[69] = 1.517512938, u[70] = 1.525013125, u[71] = 1.532513313, u[72] = 1.540013500, u[73] = 1.547513688, u[74] = 1.555013875, u[75] = 1.562514063, u[76] = 1.570014250, u[77] = 1.577514438, u[78] = 1.585014625, u[79] = 1.592514813, u[80] = 1.600015000, u[81] = 1.607515188, u[82] = 1.615015375, u[83] = 1.622515563, u[84] = 1.630015750, u[85] = 1.637515938, u[86] = 1.645016125, u[87] = 1.652516313, u[88] = 1.660016500, u[89] = 1.667516688, u[90] = 1.675016875, u[91] = 1.682517063, u[92] = 1.690017250, u[93] = 1.697517438, u[94] = 1.705017625, u[95] = 1.712517813, u[96] = 1.720018000, u[97] = 1.727518188, u[98] = 1.735018375, u[99] = 1.742518563, u[100] = 1.750018750}

(2)

Y:=map(rhs, convert(Sol,list));

[1.007500188, 1.015000375, 1.022500563, 1.030000750, 1.037500938, 1.045001125, 1.052501313, 1.060001500, 1.067501688, 1.075001875, 1.082502063, 1.090002250, 1.097502438, 1.105002625, 1.112502813, 1.120003000, 1.127503188, 1.135003375, 1.142503563, 1.150003750, 1.157503938, 1.165004125, 1.172504313, 1.180004500, 1.187504688, 1.195004875, 1.202505063, 1.210005250, 1.217505438, 1.225005625, 1.232505813, 1.240006000, 1.247506188, 1.255006375, 1.262506563, 1.270006750, 1.277506938, 1.285007125, 1.292507313, 1.300007500, 1.307507688, 1.315007875, 1.322508063, 1.330008250, 1.337508438, 1.345008625, 1.352508813, 1.360009000, 1.367509188, 1.375009375, 1.382509563, 1.390009750, 1.397509938, 1.405010125, 1.412510313, 1.420010500, 1.427510688, 1.435010875, 1.442511063, 1.450011250, 1.457511438, 1.465011625, 1.472511813, 1.480012000, 1.487512188, 1.495012375, 1.502512563, 1.510012750, 1.517512938, 1.525013125, 1.532513313, 1.540013500, 1.547513688, 1.555013875, 1.562514063, 1.570014250, 1.577514438, 1.585014625, 1.592514813, 1.600015000, 1.607515188, 1.615015375, 1.622515563, 1.630015750, 1.637515938, 1.645016125, 1.652516313, 1.660016500, 1.667516688, 1.675016875, 1.682517063, 1.690017250, 1.697517438, 1.705017625, 1.712517813, 1.720018000, 1.727518188, 1.735018375, 1.742518563, 1.750018750]

(3)

plot([0,X[]],Y, view=[0..1,0..2], scaling=constrained);

 

 


 

Download IntEq.mw

I did not find a way to increase the size of this font inside Maple. As a workaround, you can use a Windows screen magnifier or just wear glasses. See the screenshot:

If you have specific points, you can use  geom3d  package.

Example:

restart;
with(geom3d):
point(P, 5, 6, 7);
point(A, 1, -2, 3);
point(B, 2, 4, 1);
line(AB, [A,B]);
projection(Q, P, AB);
detail(Q);
                               

 

 

A:=isolve(n+k=2*c);
is(A<>NULL and eval(n, A)::name);
                          
A := {c = _Z1, k = 2*_Z1-_Z2, n = _Z2}
                                                       true

Above  _Z1  and  _Z2  are any integers.

You can use  PolyhedralSets  package to get the vertices and edges of your polygon. This also works in the multidimensional case.

Your example (failed to load the contents of the file, so the image is shown, the link to the file below):


You can extract all vertices in one list with  Relations  command:
V:=Vertices(ps):
Relations~(V);
map(v->eval([x,y],v), %);
               
  [[y = -1, x = -1], [y = 1, x = -1], [y = -1, x = 1], [y = 1, x = 1]]
                                       [[-1, -1], [-1, 1], [1, -1], [1, 1]]

The same for edges.

 

Download PS.mw


 

 

Use  factors  command for this:

f:=x*(x+1)^4*(x^2+x+1)*(x^3+x^2+1)^5:
factors(f);
map(t->op(1,t), %[2]);
sort(%);
                         

 

I usually use  is  command for such checks:

is(2*cos(phi)^2-1=cos(2*phi));
                                                             
true


And more often I look  here , if I don’t know any rare identity.


Edit.

Maple 2018.2 returns the result in the form of finite sums and products (without hypergeometric functions):

restart;
int(sin(x)^n, x) assuming n::posint;
eval(%, n=10);
value(%);
int(sin(x)^10, x); # The direct calculation

      

restart;
Ke := Matrix(4, 4, {(1, 1) = (12*I)*E/l^3, (1, 2) = (6*I)*E/l^2, (1, 3) = -(12*I)*E/l^3, (1, 4) = (6*I)*E/l^2, (2, 1) = (6*I)*E/l^2, (2, 2) = (4*I)*E/l, (2, 3) = -(6*I)*E/l^2, (2, 4) = (2*I)*E/l, (3, 1) = -(12*I)*E/l^3, (3, 2) = -(6*I)*E/l^2, (3, 3) = (12*I)*E/l^3, (3, 4) = -(6*I)*E/l^2, (4, 1) = (6*I)*E/l^2, (4, 2) = (2*I)*E/l, (4, 3) = -(6*I)*E/l^2, (4, 4) = (4*I)*E/l}):
k:=E*I/l^3:
``(k).(Ke/k);

                        

 

You can take any initial value (also any range) for the parameter yourself.
Example:

restart;
plots:-animate(plot, [m*x, x=-10..10, -10..10], m=1..5, frames=100);

Here is a simple procedure for this and an example:

Code of the procedure

P:=proc(A::Matrix, B::Matrix)
local m1,n1,n2;
m1:=op([1,1],A);
n1:=op([1,2],A);
n2:=op([1,2],B);
Matrix(m1,n2, (i,j)->add(A[i,p].B[p,j], p=1..n1));
end proc:


Example

A:=Matrix(2,3,{seq(seq((i,j)=LinearAlgebra:-RandomVector(2,generator=-9..9), i=1..2),j=1..3)});
B:=Matrix(3,2,{seq(seq((i,j)=LinearAlgebra:-RandomVector(2,generator=-9..9), i=1..3),j=1..2)});

Matrix(2, 3, {(1, 1) = Vector(2, {(1) = 2, (2) = -9}), (1, 2) = Vector(2, {(1) = 3, (2) = 1}), (1, 3) = Vector(2, {(1) = -9, (2) = -7}), (2, 1) = Vector(2, {(1) = 3, (2) = 6}), (2, 2) = Vector(2, {(1) = -8, (2) = -8}), (2, 3) = Vector(2, {(1) = 0, (2) = -3})})

 

Matrix(%id = 18446746086682646398)

(1)

P(A,B);

Matrix(2, 2, {(1, 1) = 122, (1, 2) = 104, (2, 1) = -80, (2, 2) = -12})

(2)

 


Addition. Below is an example of another method (without a custom procedure):
 

A:=Matrix(2,3,(i,j)->LinearAlgebra:-RandomVector(2,generator=-9..9));
B:=Matrix(3,4,(i,j)->LinearAlgebra:-RandomVector(2,generator=-9..9));
subsindets(A.B, `*`,t->`.`(op(t)));

Download P.mw

At the beginning of the code, you enter a recursive function  Tm . But your method does not work. Take a look:
 

restart;
Tm:=(t,m)-> 2*t*Tm(t,m-1)-Tm(t,m-2):
Tm(t,0):=1:
Tm(t,1):=t:
Tm(3,4);  # Example

     Error, (in Tm) too many levels of recursion


You can use the following procedure to correctly determine:
 

restart;
Tm:=proc(t,m)
option remember;
if m=0 then return 1 else
if m=1 then return t else
2*t*Tm(t,m-1)-Tm(t,m-2) fi; fi;
end proc:
Tm(3,4);  # Example

                                   577


You can also get an explicit formula for TM :
 

restart;
Tm:=unapply(rsolve({Tm(t,m)=2*t*Tm(t,m-1)-Tm(t,m-2), Tm(t,0)=1, Tm(t,1)=t}, Tm(t,m)),t,m);
Tm(3,4);
simplify(%);

We can use the inert form integral for this:

G := Int( exp( -epsilon * ( x^4 + x^2 ) ), x = -10 .. 10);
plot( G, epsilon=0 .. infinity );
         

          


 

restart

Dice1 := rand(1 .. 6)

Tal1 := Statistics:-Tally([seq(Dice1(), i = 1 .. 1000)], output = table)

table( [( 1 ) = 185, ( 2 ) = 169, ( 3 ) = 159, ( 4 ) = 180, ( 5 ) = 153, ( 6 ) = 154 ] )

(1)

EffectifDice1 := [seq(Tal1[i], i = 1 .. 6)]

[185, 169, 159, 180, 153, 154]

(2)

FreqDice1 := (1/1000)*EffectifDice1

[37/200, 169/1000, 159/1000, 9/50, 153/1000, 77/500]

(3)

A1 := evalf(sum(FreqDice1[i]*(FreqDice1[i]-1/6)^2, i = 1 .. 6))

0.1577317778e-3

(4)

NULL


 

Download QuestionSimulation_new.mw

First 97 98 99 100 101 102 103 Last Page 99 of 290