Kitonum

21550 Reputation

26 Badges

17 years, 124 days

MaplePrimes Activity


These are answers submitted by Kitonum

restart;
plot([sin, cos], -Pi .. Pi, title = "Simple Trig Functions", legend = ["Sine Plot", "Cosine Plot"], titlefont = ["ARIAL", 15], labels = ["x values", ` Re`^(`1`/`2`)*C__f], labeldirections = ["horizontal", "vertical"], labelfont = ["HELVETICA", 16], linestyle = [solid, longdash], axesfont = ["HELVETICA", "ROMAN", 16], legendstyle = [font = ["HELVETICA", 9], location = right], tickmarks = [[-Pi = -180^o, -2*Pi*(1/3) = -120^o, -(1/3)*Pi = -60^o, 0 = `0`^o, (1/3)*Pi = 60^o, 2*Pi*(1/3) = 120^o, Pi = 180^o], default]);


Or

restart; 
plot([sin, cos], -Pi .. Pi, title = "Simple Trig Functions", legend = ["Sine Plot", "Cosine Plot"], titlefont = ["ARIAL", 15], labels = ["x values", typeset("Re",``^(`1`/`2`), C__f)], labeldirections = ["horizontal", "vertical"], labelfont = ["HELVETICA", 16], linestyle = [solid, longdash], axesfont = ["HELVETICA", "ROMAN", 16], legendstyle = [font = ["HELVETICA", 9], location = right], tickmarks = [[-Pi = -180^o, -2*Pi*(1/3) = -120^o, -(1/3)*Pi = -60^o, 0 = `0`^o, (1/3)*Pi = 60^o, 2*Pi*(1/3) = 120^o, Pi = 180^o], default]);


Addition. I advise adding 2 options  size=[1000,400], scaling=constrained  and slightly reducing the font size for the axes  (take 14 instead of 16). Then your plot looks better.

See the help on  Finance:-WienerProcess  command.

I took  n<=4 , because I did not understand what the (three) dots mean if  n>=5 .

Y:=(delta,b,n)->piecewise(n=0,1/(1+b^2), n=1,arctan(1/b), n=2,1+ln(b^2 + 1)/2-b*arctan(1/b), n=3,1/2*(2*delta-3*b-2*b*ln(b^2 + 1)/2+arctan(1/b)*(b^2-1)), n=4,(1/36)*(18*delta^2-36*delta*b+33*b^2-11+6*ln(b^2 + 1)/2*(3*b^2-1)+6*b*arctan(1/b)*(3-b^2)));

plot(Y(2,b,4), b=0..10); 
# Example of use
 

From your question, I first learned about  Interpolation  package. But when I tried to deal with his work when working with your examples, the message always appears "Kernel connection has been lost"

All your examples are easy to solve in  CurveFitting  package. Only it is necessary to use an exact arithmetic, otherwise due to rounding errors Maple writes that at the node points  (x=0,1, .. ,10))  the derivative is not defined.

restart;
with(CurveFitting):
points := [seq(x, x = 0 .. 10)]; 
data := [seq(sqrt(1+x^2), x = 0 .. 10)];
f:=unapply(Spline(points, data, x), x);
int(f(x), x = 0 .. 1);
evalf(%); 
eval(diff(f(x), x), x = 2);
evalf(%);
plot(f(x), x = 0 .. 10);
plot([f(x), diff(f(x), x)], x = 0 .. 10);

 

 

Because  is the imaginary unit in Maple, then I use  T  instead. Below we build a table  T  that allows us to find the values  T[i1,i2,i3,i4]  for the indices  [i1,i2,i3,i4] . I think that this is something equivalent to a tensor.

restart;
for i1 from 1 to 3 do
  for i2 from 1 to 3 do
    for i3 from 1 to 3 do
      for i4 from 1 to 3 do
        if i1=i2 and i2=i3 and i3=i4 then
        T[i1,i2,i3,i4]:=1.0;
        else
        T[i1,i2,i3,i4]:=0.0 end if;
        end do:
      end do:
    end do:
  end do:
T:=convert(T, table);
                


Examples of use:

T[1,2,3,4];
T[2,2,2,2];
                                         
 0.
                                          1.


Of course, we can define this much shorter as a function of 4 variables:

T:=(i1,i2,i3,i4)->`if`(i1=i2 and i2=i3 and i3=i4, 1., 0.):

 

Examples of use:

T(1,2,3,4);
T(2,2,2,2);

I replaced  sum  with  add  and got the following result:

restart;
M:=4: N:=2: alpha:=1:
 
add(add(((-1)^i2*GAMMA(N-i2+alpha)*2^(N-2*i2)/(GAMMA(alpha)*factorial(i2)*factorial(N-2*i2)*(N-2*i2+1))*(GAMMA(k+1)*(k+alpha)*GAMMA(alpha)^2/(Pi*2^(1-2*alpha)*GAMMA(k+2*alpha))))*(add((1/2)*(-1)^i*GAMMA(k-i+alpha)*2^(k-2*i)*(1+(-1)^(N-2*i2+1+k-2*i))*GAMMA((1/2)*N-i2+1+(1/2)*k-i)*GAMMA(alpha+1/2)*L[k]/(GAMMA(alpha)*factorial(i)*factorial(k-2*i)*GAMMA(alpha+3/2+(1/2)*N-i2+(1/2)*k-i)), i = 0 .. floor((1/2)*k))), i2 = 0 .. floor((1/2)*N)), k = 0 .. M);

                                               -(1/6)*L[1]+(1/6)*L[3]
                                              

You can easily calculate this using  LinearAlgebra  package (here we have a more compact syntax than the one suggested above):

P1 := [-17/12,11/36,-65/36]:
P5 := [-11/12,-7/36,-47/36]:
P6 := [-2/3,-1/9,-8/9]:
P8 := [-5/4,-1/12,-17/12]:
V1:=convert(P8-P5, Vector);
V2:=convert(P6-P5, Vector);
V3:=convert(P1-P5, Vector);
with(LinearAlgebra):
V1 &x V2 . V3;

 

restart;
A:=proc(x::list)
local N, L;
N:=nops(x);
L:={$1..N};
Matrix(N,(i,j)->`if`(i<>j,mul(x[i]-x[k],k=L minus {i,j})/mul(x[j]-x[k],k=L minus {j}), add(1/(x[i]-x[k]), k=L minus {i})));
end proc:


Example of use:

A([a,b,c,d]);
           

 

 

I've adjusted your syntax a little. Maple finds the exact solution of this equation in a closed form:

restart;
sys[1] := [-(diff(u(x, t), t, t))-(diff(u(x, t), x, x))+u(x, t) = 2*exp(-t)*(x-(1/2)*x^2+(1/2)*t-1), u(x, 0) = x^2-2*x, u(x, 1) = u(x, 1/2)+((1/2)*x^2-x)*exp(-1)-((3/4)*x^2-(3/2)*x)*exp(-1/2), u(0, t) = 0, D[1](u)(1, t) = 0]:
ans:=pdsolve(sys[1]);
pdetest(ans, sys[1]);
plot3d(eval(u(x,t), ans), x=0..2, t=0..2);

             

CalculesS:=proc(n)
local S1, S2, i, j;
S2:=0:
for i from 1 to n do
S1:=1;
for j from i to n do
S1:=S1*1/j^i;
od;
S2:=S2+S1;
od:
S2;
end proc:


Example of use:

CalculesS(100);


Of course, it's easier to write without any loops, if you use the commands  product  and  sum :

S:=n->sum(product(1/j^i, j=i..n), i=1..n); 
S(100);

 

I did not find any contradictions. Of course, ans1  and  ans2  differ in form, but in fact they determine the same set of points (the intersection of two circles). ans1  and  ans3  are absolutely identical:

is(convert~(convert(ans3, set), set)={ans1});
                                                                 
true
 

Maple calculates the values of this function in the range  -1..1 as complex. Look

seq(LegendreQ((1/2)*sqrt(5)-1/2, x), x=-0.9..0.9, 0.1);

                -1.149108610+1.159683101*I, -1.227886365+.7316329045*I, -1.247731828+.4486859813*I, -1.240765970+.2275713122*I, -1.217080008+0.4156209706e-1*I, -1.181045854-.1215055276*I, -1.134806859-.2682523506*I, -1.079402624-.4027068739*I, -1.015207630-.5275156677*I, -.9421078357-.6445179356*I, -.8595474579-.7550479980*I, -.7664842691-.8601073870*I, -.6612453970-.9604688726*I, -.5412284504-1.056742479*I, -.4023020093-1.149419091*I, -.2375185873-1.238900244*I, -0.3395679811e-1-1.325519053*I, .2369504060-1.409555298*I, .6644541489-1.491246518*I

You can use  InertForm  package for this:

InertForm:-Parse("x+(y^(2+x)-4)/3");
lprint(%);
value(%);

               

Curves:=plot([tan(x), tan(Pi/4)+D(tan)(Pi/4)*(x-Pi/4), arctan(x), arctan(1)+D(arctan)(1)*(x-1)], x=0..3, 0..3, color=[red,yellow,blue,green], discont, legend=[tan(x),"Tangent for tan(x)", arctan(x),"Tangent for arctan(x)"]):
Points:=plot([[[Pi/4,1]], [[1,Pi/4]]], style=point, color=[red,blue], symbol=solidcircle, symbolsize=10):
plots:-display(Curves, Points, scaling=constrained, size=[400,400]);

                          

BVP := [4*(diff(u(x, t), t))-9*(diff(u(x, t), x, x))-5*u(x, t) = 0, u(0, t) = 0, u(6, t) = 0, u(x, 0) = sin((1/6)*Pi*x)^2]:
sol:=pdsolve(BVP):        
U := unapply(rhs(sol), [x, t]);  
plot3d(add(op(1,U(x, t)), n=1..20, 2), x = 0 .. 6, t = 0 .. 4);

 

 

First 119 120 121 122 123 124 125 Last Page 121 of 290