Kitonum

21550 Reputation

26 Badges

17 years, 124 days

MaplePrimes Activity


These are answers submitted by Kitonum

Use  solve  command, which symbolically solves systems of polynomial equations in the form RootOf of a high degree polynomial, after that  allvalues  command and then apply  evalf  command.


Edit.

In your integral,  y  variable is the integration variable (dummy variable). A definite integral does not depend on the name of the variable of integration, so simply replace y under the integral sign with any symbol that is not in your worksheet. Here is a simple example in which the same error is encountered:

f := x->int(x/(x+sin(x)), x = 0 .. x^2); 
f(1/x);   
# An error
F := x->int(s/(s+sin(s)), s = 0 .. x^2);  # Workaround
F(1/x);  # OK


Edit.

Example:

randpoly([x, y], dense, degree = 4);
select(t->degree(t,x)+degree(t,y)<2, %);  

        

Or even shorter:

select(t->degree(t, [x,y])<2, %);

 

Edit.

Simple procedure Cramer returns the main determinant of the system  det[A] , all the auxiliary determinants  det[i]  and the values of all unknowns calculated according to Cramer's rule:

Cramer:=proc(Sys::{set(equation), list(equation)}, Var::list(name))
local n, A, V, det, S;
uses LinearAlgebra;
n:=nops(Sys);
A, V := GenerateMatrix(Sys, Var);
det[A]:=Determinant(A);
S:=seq(Determinant(<A[..,1..i-1] | V | A[..,i+1..n]>), i=1..n);
print(det__A=det[A], seq(det[i]=S[i], i=1..n));
seq(Var[i]=S[i]/det[A], i=1..n);
end proc:


Example of use:

A:=LinearAlgebra:-RandomMatrix(4, generator=-9..9):
V:=LinearAlgebra:-RandomVector(4, generator=-9..9):
Sys:=LinearAlgebra:-GenerateEquations(A, [seq(x[i], i=1..4)], V);
Cramer(Sys, [seq(x[i], i=1..4)]);

    
 

 

restart;
with(DEtools): 
DE1 := diff(y(x),x) = diff(y(x),x$3)+3*diff(y(x),x$2)+4*diff(y(x),x)+12*y(x);
DEplot(DE1, y(x), x = 0..5, [[y(0)=-3, D(y)(0)=0, (D@@2)(y)(0)=0]]);

              

 

Your equation only Maple 2017 will be able to solve:

pde := (diff(u(x, y), x, x))+diff(u(x, y), y, y) = 0;
 bc[1]:= D[2](u)(x,0) = 0;
 bc[2]:= u(x,1) = x^2-x;
 bc[3]:= u(0,y)=0;
 bc[4]:= u(1,y)=0;
 pdsolve({pde, bc[1], bc[2],bc[3],bc[4]}, HINT= X(x)*Y(y));

                          

     

HINT  option can be omitted.

 

X:=<1,2,3,4>:
Y:=<5,6,7,8>:
x.X+y.Y;

                                    

In this example  X  and  Y  are vectors. For matrices everything is the same.


Edit.

Try  ContoursWithLabels  procedure  from  here .


Your example:

ContoursWithLabels(-3.392318438*exp(-4.264628895*x)*sin(6.285714286*y), -1/2 .. 1/2, -1/2 .. 3/2, {seq(-12 .. 12, 3)}, [color = black, axes = box, size=[1000,600]], Coloring = [colorstyle = HUE, colorscheme = ["Cyan", "Red"], style = surface]);

      


If you do not want coloring, then just remove  Coloring  option from the code.


With the built-in command  plots:-contourplot , do so

plots:-contourplot(-3.392318438*exp(-4.264628895*x)*sin(6.285714286*y), x = -1/2 .. 1/2, y = -1/2 .. 3/2, contours=[seq(-12..12,3)], size=[800,500], numpoints=10000);


Edit.

Execute:

op~(Sol);

Do := proc( F::list(procedure) , Q::list(list))
local n:=nops(F), m:=nops(Q);
if n<>m then error "Should be nops(F)=nops(Q)" fi;
seq(F[i]~(Q[i]), i=1..n);
end proc:


Example of use:

Do([x -> x , y -> y^2], [[0,1,2,3], [4,5,6,7]]);

                                            [0, 1, 2, 3], [16, 25, 36, 49]


Edit.

I took  Gamma/(2*Pi)=1  and plotted  Re(w)  (in red) and  Im(w)  (in blue):

restart;
w:=theta-I*ln(r):
X, Y:=(Re,Im)(w) assuming theta::real, r>0;
plot3d([[r*cos(theta),r*sin(theta),X], [r*cos(theta),r*sin(theta),Y]], theta=0..2*Pi, r=0..3, color=[red,blue], axes=normal, view=[-4.3..4.3, -4.3..4.3, -1..6.7]); 

                              

See help on  ?plot,tickmarks

Example:
restart;
Digits:=20:
plot(x^2, x=0..2, 1..1.00000000001); 
# Long values
plot(x^2, x=0..2, 1..1.00000000001, tickmarks=[default, [seq(1+2*10^(-12)*k=1+2*k*10^(`-12`), k=1..5)]]);  # Short values

Use nested  seq  command.

Example:

seq(seq(A[i,j] >= 0, j=1..4), i=1..3);

You can not find a limit with your procedure, because it for any particular n simply returns a number, but an exact dependence of the sum on n is needed.
The limit can be found as follows:

S:=unapply(sum(2*i/n*2/n, i=1..n), n);
simplify(S(n));
limit(%, n=infinity);

                                       

By  p  procedure the limit can be found only numerically with  a specific accuracy:

evalf[5](p(100000));

                                           2.0000

 

 

 

gl_inveq:=(t,x,alp)->tan((x-t)/alp/(1+t^2))-t:
gl_inv:=(v,alp)->fsolve(gl_inveq(t,v,alp)=0, t):
gl_inv(2,1);
# The calculation of a value of the function
evalf(Int(gl_inv(2,t), t=0..1));  # The calculation of the value of the integral

                                            0.8299950485
                                            -0.5405524297

First 140 141 142 143 144 145 146 Last Page 142 of 290