Kitonum

21550 Reputation

26 Badges

17 years, 124 days

MaplePrimes Activity


These are answers submitted by Kitonum

Herd size that satisfies all the constraints, very large, and Maple can count it only approximately. Here are calculations using your link above:

w := 300426607914281713365*sqrt(609)+84129507677858393258*sqrt(7766):

n := evalf((w^4658-1/w^4658)^2/(4657*79072));

L := [7460514, 7358060, 10366482, 4149387, 4893246, 3515820, 7206360, 5439213]:

N := `+`(op(L));

N*n;

 

 

Brian, you can solve your problem by  solve  command, if  d  will be equal the least common multiple of all denominators.

restart;

unprotect(D):

L:=[B,D,W,Y,b,d,w,y]:

solve({W=5/6*B+Y, B=9/20*D+Y, D=13/42*W+Y, w=7/12*(B+b),

  b=9/20*(D+d), d=11/30*(Y+y), y=13/42*(W+w)});

assign(%):

d := ilcm(op(map(denom, L)));

L;

You can simply write:

all_plots:=[plot(sin(10*x+0.2),x=0..1, thickness=10, color=blue), plot(1-sin(10*x),x=0..1, thickness=10, color=red), plot(sin(10*x),x=0..1, thickness=10, color=green)]: 

plots:-display( all_plots );

 

 Done in M 12 classic.

Idea of Markiyan in above link was used.

f := piecewise(0 <= x and x <= 2, x^2, 2<x and x<3, undefined, 3 <= x and x <= 4, x^2-3, 4<x and x<5, undefined, 5 <= x and x <= 6, x^2-10):

plot(f, x = 0 .. 6, tickmarks = [default, [seq(i = i, i = 1 .. 4), 5 = "...", seq(j = j+3, j = 6 .. 13), 14 = "...", seq(k = k+10, k = 15 .. 26)]], thickness=2, discont = true, title = "Plot of  x^2");

 

 

dsolve(-(diff(lambda(s), s))-2*(diff(lambda(s), s, s))-(diff(lambda(s), s, s, s)) = 0):

subs({_C1=C[1], _C2=C[2], _C3=C[3]}, %);

 

 

The first result is also incorrect. Should be:  undefined if  -100<n<-10,  -ln|n+10|+ln|n+100| otherwise, if we consider  ln(0)=-infinity

Unfortunately, Maple weakly solves examples with parameters. Here are another two examples where the answer is incorrect:

solve(a*x = b, x);

solve(sqrt(x-a) = x, x);

 

Mathematica correctly solves both of these examples:

Vectors can be constructed by  plots[arrow]  command.

Example:

A := Matrix(3, 3, [1, 2, 3, 5, 1, 6, 6, 3, 9]);

V1, V2, V3:=A[..,1], A[..,2], A[..,3];

P:=plots[arrow]({V1, V2, V3}, color=red, width=[0.1, relative=false],scaling=constrained, axes=normal, orientation=[45,75]):

T:=plots[textplot3d]([[1, 5, 6, "V1"], [2, 1, 3, "V2"], [3, 6, 9, "V3"]], color=black):

plots[display](P, T, view=-1..10);

 

 

Somewhat easier to just use plot command:

f:=x->x^3+3*x^2+1:

 plot([seq([x, f(x)], x=-10..10)]);

Your procedure works correctly.

Example:

Digits := 20:


hw1(g, 0., 9):

seq(x[i], i = 0 .. 10);

 

 Explanation:  by default, the output of a procedure call is the last calculation.

Your spheres can be plotted by the code in single line without loops. For clarity, I reduced the number of spheres to 5:

plots[implicitplot3d]([seq(x^2+y^2+z^2 = (2*i)^2, i = 1 .. 5)], x = -10 .. 10, y = -10 .. 0, z = -10 .. 10, style = surface, numpoints = 10000, view = [-11 .. 11, -11 .. 7, -11 .. 11], scaling = constrained, axes = normal, orientation = [50, 75]);

 

Visualization of the surface  z=y^2+y^3+(y^3-x^2-3*x*y)^(1/4) - 5*x*y . Surface itself and its edge are built by individual  spacecurves , as  plot3d  is not completing the construction at the edges, even at high values of  numpoints . Points of global minimum are red:

F := y^2+y^3+(y^3-x^2-3*x*y)^(1/4)-5*x*y:

Sol := solve(y^3-x^2-3*x*y, x):

A := plots[spacecurve]([Sol[1], y, eval(F, x = Sol[1])], y = -3 .. 6, thickness = 2, color = blue, numpoints = 10000):

B := plots[spacecurve]([Sol[2], y, eval(F, x = Sol[2])], y = -3 .. 6, thickness = 2, color = blue, numpoints = 10000):

C1 := seq(plots[spacecurve]([x, y, F], x = Sol[1] .. Sol[2], color = blue, numpoints = 10000), y = -2.2 .. 0, .2):

C2 := seq(plots[spacecurve]([x, y, F], x = Sol[2] .. Sol[1], color = blue, numpoints = 10000), y = 0 .. 6, .2):

P1 := plottools[point]([0, 0, 0], .2, symbolsize = 12, symbol = solidsphere, color = red):

P2 := plottools[point]([4, 4, 0], .2, symbolsize = 12, symbol = solidsphere, color = red):

plots[display](P1, P2, A, B, C1, C2, view = [-10 .. 6.5, -3 .. 5.5, -4 .. 40], axes = normal, orientation = [20, 80]);

 

 

 

Unfortunately, the solution with Maple is rather cumbersome.

1) Consider the function  F:=y^2+y^3+(y^3-x^2-3*x*y)^(1/4) - 5*x*y :
   
Construct the domain of the function  F  (green color) and find the equations of the individual branches, bounding it:

P:=plots[implicitplot](-y^3+x^2+3*x*y, x=-5..5,y=-3..5, filledregions, coloring=[green, pink],thickness=4, numpoints=10000, scaling=constrained):

T:=plots[textplot]([[-4.5, 1, "A"], [-0.2, -0.1, "B"], [1, -1.9, "E"], [3.3, -2.4, "F"], [2, -0.5, "G"], [4, 3.7, "C"]], font=[TIMES,ROMAN,18]):

plots[display](P,T);

 

Sol:=solve(y^3-x^2-3*x*y, x);

AB:=expand(eval(F, x=Sol[2]));  #  Values ​​of the function on individual branches

BC:=expand(eval(F, x=Sol[1]));

BEF:=expand(eval(F, x=Sol[2]));

BGE:=expand(eval(F, x=Sol[1]));

 

2) Obviously, the function  F  is bounded from below and at some point of its domain (or on its boundary) takes its smallest value. First, we find the critical points of  F :

Dx:=diff(F, x);

Dy:=diff(F, y);

solve({Dx=0,Dy=0});  #  The unique critical point

evalf(eval(F, %));

Since  F(0,0) = 0, then the function  F  takes its minimum value  not in found critical point, and at a point on the boundary.

3) Next, look for the minimum of the function  F  on the boundary:

minimize(AB, y=0..infinity, location);

op(simplify([minimize(BC, y=0..infinity, location)]));

minimize(BEF, y=-9/4..0, location);

minimize(BGE, y=-9/4..0, location);

 

Thus the final answer to the inequality  y^2+y^3+(y^3-x^2-3*x*y)^(1/4) - 5*x*y<=0 :

(x, y)=(0, 0)  and  (x, y)=(4, 4) 

 

 

 

You can use  subs  command in this case:

restart;

 f:=x*y+x^2+y^3:

 subs({x=x1, y=x2}, f);

                     x1*x2+x1^2+x2^3

Mathematica easily solves this inequality:

 

Thus we have only two solutions  (0, 0)  and  (4, 4) .

 

 

Sol1:=dsolve({diff(y(x),x)=x^2-y(x)^2, y(0)=1}, numeric):

Sol2:=dsolve({diff(z(x),x)=x^2-2*z(x)^2, z(0)=2}, numeric):

P1:=plots[odeplot](Sol1, [x,y(x)], x=0..2, thickness=2, color=red):

P2:=plots[odeplot](Sol2, [x,z(x)], x=0..2, thickness=2, color=blue):

plots[display](P1, P2);

 

 

First 241 242 243 244 245 246 247 Last Page 243 of 290