Kitonum

21495 Reputation

26 Badges

17 years, 57 days

MaplePrimes Activity


These are answers submitted by Kitonum

If the triangle has integer sides and the coordinates of its vertices are integers, it is obvious that the length of each side (if it is not parallel to the axes) has the hypotenuse in a Pythagorean triangle. But not exists  Pythagorean  triangle with hypotenuse to be equal   28:

L:=[]:

for b from 2 to 39 do

for a from 1 to b-1 do

for c from 3 to 40 do

if a^2+b^2=c^2 then L:=[op(L),[a,b,c]] fi:

od: od: od:

L;  #  All Pythagorean triangles with the hypotenuse  <=40

 

[[3, 4, 5], [6, 8, 10], [5, 12, 13], [9, 12, 15], [8, 15, 17], [12, 16, 20], [15, 20, 25], [20, 21, 29], [7, 24, 25], [10, 24, 26], [18, 24, 30], [21, 28, 35], [16, 30, 34], [24, 32, 40], [12, 35, 37], [15, 36, 39]]

 

Therefore, we can consider  A(0, 0) ,  B(28, 0),  C(x,y) :

solve({x^2+y^2=17^2, (28-x)^2+y^2=39^2, y>0});

                                    {x = -8, y = 15}

 

PS: Using Pythagorean triangles, you can significantly increase the search range, e.g., to  x=-1000..1000, y=-1000..1000 

Of course, your example may be easier to solve by hand, but if  with Maple, you can use the usual substitution in  Green's formula (from Wiki)

 

eval((diff(M(x,y),x)-diff(L(x,y),y)), {L(x,y)=diff(f(x,y),y), M(x,y)=-diff(f(x,y),x)});

simplify(%,{diff(f(x,y),x,x)+diff(f(x,y),y,y)=0});

int(%, [y=y1(x)..y2(x), x=a..b]); 

 

 

knn:=Matrix(10,1):

for m from 1 to 10 do

P:=fsolve({y=1/kn,y=-tan(kn)},{kn=(m-1)*Pi..m*Pi,y=0..5});

knn[m,1]:=rhs(P[1]);

end do:

 

knn[3,1];

knn;

 

 

The solution closest to brian's decision:

P := {3, 4, 5, 6, 7, 8, 28, 30, 35}:
Total:=simplify(convert(P, `*`)^(1/3));
A := combinat:-choose(P, 3):
B:=select(a->is(convert(a,`*`)=Total), A);
C:=combinat:-choose(B, 3):
op(select(c->is(`union`(op(c))=P), C));

 

 

There is the unique solution:

S:={3,4,5,6,7,8,28,30,35}: L:={}:

T:=combinat[choose](S, 3):

for t in T do

S1:=S minus t:

U:=combinat[choose](S1, 3):

for u in U do

S2:=S1 minus u:

if convert(t, `*`)=convert(u, `*`) and convert(u, `*`)=convert(S2, `*`) then

L:={op(L), {t,u,S2}} fi:

od: od:

L;

                                  {{3, 8, 35}, {4, 7, 30}, {5, 6, 28}}

If you do not use any special properties of the dodecahedron, then the solution is not very complex, but rather cumbersome. 

We will look for the vertex coordinates of a dodecahedron inscribed in the unit sphere. We assume that the uppermost and lowermost vertex lies on the axis Oz, the vertex adjacent to the top lies in the plane xOz. First we look for the edge length of the dodecahedron (see figure):

restart;
AB:=2*a*convert(sin(54*Pi/180), radical);
BK:=AB/sqrt(3):
OK:=sqrt(1-BK^2):
EK:=sqrt(a^2-BK^2):
solve(OK+EK=1);
a:=op(select(t->is(t>0), [%]));  # the length of the edge

 

 

Then we find the coordinates of the vertex  A  and vertex  B , and  C  using the rotation around the axis Oz:

c:=a/2:  # Cosine of the angle OEA
with(geom3d):
point(E, 0, 0, 1):
point(A,simplify(a*sqrt(1-c^2)), 0, simplify(1-a*c)):
coordinates(A);
rotation(B, A, 2*Pi/3, line(l,[0,0,t],t)):
rotation(C, A, 4*Pi/3, line(l,[0,0,t],t)):
coordinates(B);
coordinates(C);

 

Next, we find the coordinates of the vertices  F and G, belonging to the face  AFGBE, using a rotation about an axis passing through the origin and center of this face:

EO1:=simplify(a/2/convert(cos(54*Pi/180), radical)):
midpoint(L, A, B):
point(O1, convert(simplify(convert(coordinates(E), Vector)+convert(coordinates(L)-coordinates(E), Vector)*EO1/distance(E,L)), list)):
dsegment(OO1, [point(o, 0,0,0), O1]):
rotation(F, A, 72*Pi/180, line(l1,[o,OO1])):
rationalize(simplify(convert(coordinates(F), radical)));
point(F, %):
rotation(G, A, 144*Pi/180, line(l1,[o,OO1])):
expand(rationalize(simplify(convert(coordinates(G), radical))));
point(G, %):
Pol1:=plottools[polygon]([coordinates(A),coordinates(F),coordinates(G),coordinates(B),coordinates(E)], style=line, thickness=2, color=red):
s1:=plottools[line](coordinates(A),coordinates(B), linestyle=3, color=black):
s2:=plottools[line](coordinates(E),coordinates(O1), linestyle=3, color=black):
s3:=plottools[line](coordinates(o),coordinates(O1), linestyle=3, color=black):
T1:=plots[textplot3d]([[0,0,0,"O"], [op(coordinates(A)),"A"], [op(coordinates(B)),"B"], [op(coordinates(E)),"E"], [op(coordinates(F)),"F"], [op(coordinates(G)),"G"], [op(coordinates(L)),"L"], [op(coordinates(O1)),"O1"]], align=left, color=black, font=[TIMES,ROMAN,16]):
plots[display](Pol1, s1, s2, s3, T1, axes=normal, scaling=constrained, tickmarks=[0, 0, 0], view=[-1.4..1.4,-1.4..1.4,-0.4..1.4]);

 

 

Then we find the coordinates of all vertices yet two faces using  rotation of the face  AFGBE  around the axis Oz:

rotation(M, F, 2*Pi/3, line(l,[0,0,t],t)):
rotation(N, G, 2*Pi/3, line(l,[0,0,t],t)):
rotation(P, F, 4*Pi/3, line(l,[0,0,t],t)):
rotation(Q, G, 4*Pi/3, line(l,[0,0,t],t)):
coordinates(M);
expand(rationalize(coordinates(N)));
coordinates(P);
expand(rationalize(coordinates(Q)));
Pol2:=plottools[polygon]([coordinates(B),coordinates(M),coordinates(N),coordinates(C),coordinates(E)], style=line, thickness=2, color=red):
Pol3:=plottools[polygon]([coordinates(C),coordinates(P),coordinates(Q),coordinates(A),coordinates(E)], style=line, thickness=2, color=red):
T2:=plots[textplot3d]([[0,0,0,"O"], [op(coordinates(A)),"A"], [op(coordinates(B)),"B"], [op(coordinates(C)),"C"], [op(coordinates(E)),"E"], [op(coordinates(F)),"F"], [op(coordinates(G)),"G"], [op(coordinates(M)),"M"], [op(coordinates(N)),"N"], [op(coordinates(P)),"P"], [op(coordinates(Q)),"Q"]], align=left, color=black, font=[TIMES,ROMAN,16]):
plots[display](Pol1, Pol2, Pol3, T2, axes=normal, scaling=constrained, tickmarks=[0, 0, 0], view=[-1.4..1.4,-1.4..1.4,-0.4..1.4]);

 

 

Finally, we find all the other vertices of the dodecahedron, using the reflection about the plane xOy and rotation around Oz:

X:=plots[display](Pol1, Pol2, Pol3):
Y:=plottools[rotate](plottools[reflect](X, [[0,0,0], [1,0,0], [0,1,0]]), Pi/3, [[0,0,0], [0,0,1]]):
rotation(P1, reflection(P0, P, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(Q1, reflection(Q0, Q, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(F1, reflection(F0, F, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(G1, reflection(G0, G, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(M1, reflection(M0, M, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(N1, reflection(N0, N, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(A1, reflection(A0, A, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(B1, reflection(B0, B, plane(xOy, z=0, [x,y,z])), Pi/3, l):
rotation(C1, reflection(C0, C, plane(xOy, z=0, [x,y,z])), Pi/3, l):
reflection(E1, E, plane(xOy, z=0, [x,y,z])):
T4:=plots[textplot3d]([[op(coordinates(A1)),"A1"], [op(coordinates(B1)),"B1"], [op(coordinates(C1)),"C1"], [op(coordinates(E1)),"E1"], [op(coordinates(F1)),"F1"], [op(coordinates(G1)),"G1"], [op(coordinates(M1)),"M1"], [op(coordinates(N1)),"N1"], [op(coordinates(P1)),"P1"], [op(coordinates(Q1)),"Q1"]], align=left, color=black, font=[TIMES,ROMAN,14]):
P1Q:=plottools[line](coordinates(P1),coordinates(Q), color=red, thickness=2):
Q1F:=plottools[line](coordinates(Q1),coordinates(F), color=red, thickness=2):
F1G:=plottools[line](coordinates(F1),coordinates(G), color=red, thickness=2):
G1M:=plottools[line](coordinates(G1),coordinates(M), color=red, thickness=2):
M1N:=plottools[line](coordinates(M1),coordinates(N), color=red, thickness=2):
N1P:=plottools[line](coordinates(N1),coordinates(P), color=red, thickness=2):
T5:=plots[textplot3d]([[1.7,0,0,"x"], [0,1.7,0,"y"], [0,0,1.7,"z"]], align=above, color=black, font=[TIMES,ROMAN,16]):
plots[display](X, Y, T2, T5, T4, P1Q, Q1F, F1G, G1M, M1N, N1P, axes=normal, scaling=constrained, tickmarks=[0, 0, 0], view=[-1.7..1.7,-1.7..1.7,-1.7..1.7]);

 

 dodecahedron.mws

aa:=``(delta[1]*n[1])/``(n[f1]*delta[1]);

 If you want to reduce the fraction, then

expand(aa);

 

 

solve({30+1144*r^4-832*r^2=0, r>0});

 

DirectSearch  found  4 solutions in the specified ranges. It is very likely that there is no other positive solutions:

 

restart;

interface(rtablesize = infinity):

f := r*(8-2*x^2):

g := subs(x = f, f):

h := subs(x = g, g):

eq1 := expand(h-x):

eq2 := expand(diff(h, x)+1):

DirectSearch[SolveEquations]([eq1, eq2], [r = 0 .. 20, x = 0 .. 20], AllSolutions);

 

 

You can download  DirectSearch  package from 

http://www.maplesoft.com/applications/view.aspx?SID=101333

 

Your system is very complicated and I think that it can only be solved numerically, for example, with  fsolve  command. Only this command gives one solution, and the plot shows that there are many solutions. To find other solutions you can use this command with the appropriate option, taking the approximate solutions of the plot:

restart;

f:=r*(8 - 2*x^2);

g:=subs(x=f,f);

h:=subs(x=g,g);

eq1:= expand(h-x);

eq2:= expand(diff(h,x) + 1);

 

Sol:=fsolve({eq1, eq2});

P:=eval([r,x], Sol):

A:=plottools[disk](P, 0.02, color=green): # Green point is the obtained solution

B:=plots[implicitplot]([eq1, eq2], r=0..1, x=0..2.5, color=[red, blue], numpoints=100000):

plots[display](A, B, scaling=constrained);

 

 

Example

plot(sin(3*phi), phi = 0 .. 2*Pi, coords = polar, scaling = constrained, axes = box);

 

 

Example:

f:=(x,y)->x^2+x*y+y^3;
D[1](f)(x,y);

 or

f:=x->x^2+x*y+y^3;
D(f)(x);
int(f(x), x);

 

 

Maybe instead of  exp(k)  should be  lambda^k? (Poisson formula in probability theory).

In both cases no solution. See the plot:

lambda:=2:
 plot(exp(-lambda)*lambda^k/k!, k=0..10);

 

Refine formulation of the problem!

without parentheses with Carl's improvement:

P(z) := (1 + z^(-1))^2*(1 + z)^2*(r[1]*z + r[0] + r[1]*z^(-1)):   

add(coeff(P(z),  z, n)*z^`if`(n<=0,-n, convert(-n, symbol)), n= ldegree(P(z),z)..degree(P(z),z));

 

 

 

P(z) := (1 + z^(-1))^2*(1 + z)^2*(r1*z + r0 + r1*z^(-1)); 

add(coeff(P(z),  z, n)*z^(``(-n)), n=-3..3);  

add(coeff(P(z),  z, n)*z^(`if`(n<=0,-n, ``(-n))), n=-3..3);

 

 

First 251 252 253 254 255 256 257 Last Page 253 of 290