Kitonum

21550 Reputation

26 Badges

17 years, 123 days

MaplePrimes Activity


These are answers submitted by Kitonum

If the centroid of a triangle coincides with the orthocenter, then the triangle is equilateral. It is easy to prove that in 2D coordinates of all the vertices of this triangle can not be integers.

int(rho*(rho+1)*sin(phi), [rho = 0 .. R, phi = 0 .. Pi, theta = 0 .. 2*Pi]);

 

 

Tridiag:=proc(Diag1, Diag, Diag2, n)

local m, A, i, j;

m:=nops(Diag);

A:=Matrix(m, n);

for i to m do

for j to n do

if i=j then A[i,j]:=Diag[i] else

if i=j+1 then A[i,j]:=Diag1[j] else

if j=i+1 then A[i,j]:=Diag2[i] else

A[i,j]:=0; fi; fi; fi;

od; od;

A;

end proc:

 

Example:

Tridiag([1,2,3,4,5], [2,3,4,5,6,7], [3,4,5,6,7,8], 8);

 

 

We assume that the cylinder of a revolver has 6 chambers. The procedure returns a structure of each trial and vector of   times the trigger was pulled.

RR:=proc(N)  # N is the number of trials

local roll, i, a, L, j, b, M, Q, A;

roll:=rand(1..6);

for i to N do

a:=roll(); L:=[[a]];  # a is the chamber number in which the bullet

for j do

b:=roll(); if b=a then L:=[op(L), b]; break else  L:=[op(L), b]; fi;

od;

M[i]:=L;

od;

Q:=[seq(M[i], i=1..N)];

A:=Vector([seq(nops(Q[i])-1, i=1..nops(Q))]);

print(op(Q));

print(A);

end proc:

 

Example:

RR(10);

SolvingSystem:=proc(system, n)
 if n=1 then method s1 fi;
 if n=2 then method s2 fi;
 if n=3 then metod s3 fi;
 result;
end proc:

add(add(int00[i,j], j=1..3), i=1..3);

                           0

You have to write  exp(-10*x)  instead of  exp^(-10*x) 

Should be:

l4:=animate(textplot3d, [[0, 0, 0.9*tend,'direction'], color=red, align={BELOW}, font=[TIMES,ROMAN,14]], tend=0..50, frames=150):

 Coordinates of the end of a vector are the coordinates of the basis  plus the coordinates of the vector.

See  help on commands  ?plots[matrixplot]  and  ?table

code1.mw

Your error: in the last lines should be the sign  :=  instead of  =

Let  x  is serial number 5, y  is serial number 6, z  is serial number 7.

L:=[]:
for x from 1 to 2 do
for y from 0 to 9 do
for z from 0 to 9 do
if z=5-y then L:=[op(L), [x,y,z]]: fi:
od: od: od:
L; nops(L); combinat[numbperm]([9,8,7,7])*%;
 
 [[1, 0, 5], [1, 1, 4], [1, 2, 3], [1, 3, 2], [1, 4, 1], [1, 5, 0],

[2, 0, 5], [2, 1, 4], [2, 2, 3], [2, 3, 2], [2, 4, 1],

[2, 5, 0]]

12

144

Replace the last line by the line

solve({seq(lhs(U)[i] = rhs(U)[i], i = 1 .. 2)}, {Gx, Gy})

Solve command does not solve vector equations. Index  i  not equals to 3, because the last coordinate of lhs(U) does not contain  Gx  and  Gy .

Of course, we assume that  lhs(U)[3]=0 , otherwise there are no solutions.

Assignment   i:='i'  is incorrect, since then  Term1:=i-1  has not a specific value, and therefore the command  add  can not be executed.

algsubs command  is more powerful than applyrule command.

Example:

a:=x[2]+y-b+x[1]-c+x[5]+d+x[4]+x[3]+expand(sum(x[i], i=1..5)^2);
applyrule(sum(x[i], i=1..5)=Sum(x[i], i=1..5),a);
algsubs(sum(x[i], i=1..5)=Sum(x[i], i=1..5), a);

u:=sin(w*t-theta)+sin(w*t-theta-2*Pi/3)-sin(w*t-theta+2*Pi/3);
algsubs(w*t-theta=x, u);
expand(%);
simplify(applyrule(a::algebraic*sin(x)+b::algebraic*cos(x)=sqrt(a^2+b^2)*sin(x+arctan(b,a)),%));
subs(x=w*t-theta, %);

First 267 268 269 270 271 272 273 Last Page 269 of 290