Kitonum

21550 Reputation

26 Badges

17 years, 123 days

MaplePrimes Activity


These are answers submitted by Kitonum

We can think of a conformal mapping as a mapping from R^2 to R^2 :


 

restart;
assume(y, real);
assume(x, real);
f := z -> I + z*exp(1/4*I*Pi);
w := f(x + y*I);
u := Re(w);
v := Im(w);
with(plots): with(plottools):
R:=display(polygon([[0,0],[1,0],[0,1]],color="LightBlue"),seq(plot(i,x=0..1-i,color=black),i=0..1,0.1),plot([seq([i,t,t=0..1-i],i=0..1,0.1)],color=black)):
F:=transform(unapply([u,v],x,y)):
`f(R)`:=display(F(R)):
display(<R |`f(R)`>, scaling=constrained, size=[300,300]);
display(R,`f(R)`);

proc (z) options operator, arrow; I+z*exp(((1/4)*I)*Pi) end proc

 

I+(x+I*y)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))

 

(1/2)*x*2^(1/2)-(1/2)*y*2^(1/2)

 

1+(1/2)*x*2^(1/2)+(1/2)*y*2^(1/2)

 

 

 

 

 

 

 

 

 


 

Download conf.mw


 

restart; with(plots); with(plots, implicitplot)

pm2 := .5; dm2 := .14

NULL

A := inequal({pm2 > dm2+am2}, dt = 0 .. 1, am2 = 0 .. 1, color = "SkyBlue", numpoints = 8000); B := textplot([seq(seq([x, y, "+"], y = 0.3e-1 .. .33, 0.75e-1), x = 0.3e-1 .. .97, 0.47e-1)], font = [times, bold, 14]); display(A, B)

 

NULL


 

Download inequal_question_new.mw

restart;
eq:=x^2+2*x-1=0;
x=~[solve(eq)];

                   

 

Let  be the number of points on one dice, and   b  be the number of points on another one.
 

restart;
LE:=proc(a::integer,b::integer)
(type(a,even) and type(b,odd)) or (type(a,odd) and type(b,even)) implies a+b<=9;
end proc:

# Examples of use:
LE(2,3);
LE(5,6);

true

 

false

(1)

 


 

Download LE.mw

 

You can use an inert form for subtraction to keep the expression unchanged. For any calculations and transformations use the  value  command:

restart;
expr:=arccos(p%-a);
value(expr);
value(eval(expr,[p=0,a=1]));

                     

 

_B1  is a binary variable that is 0 or 1 :

restart;
ode:=diff(y(x),x)-y(x)/x+csc(y(x)/x)=0;
sol:=dsolve([ode,y(1)=0]);
about(_B1);
sol1:=eval(sol,_B1=0);
sol2:=eval(sol,_B1=1);
odetest(sol1,ode);
odetest(sol2,ode);

                   

Here is a solution in Maple:
 

restart;
Student:-Calculus1:-Roots(1/x^3-sin(12*x)=0, x=1.2..2);
map(x->[x,1/x^3], %); # Solutions of the system

Warning, some roots are returned as numeric approximations

 

[1.266058343, 1.591679997, 1.818677859]

 

[[1.266058343, .4927638521], [1.591679997, .2479891755], [1.818677859, .1662389018]]

(1)

 


 

Download nlsystem.mw

restart;
plots:-animate(plot,[cos(2*theta),theta=0..a, coords=polar], a=0..2*Pi);

 

We can significantly increase efficiency if we use symmetries: from one solution we can get  6 * 6 = 36 solutions by permutations of the first three and last three numbers. Instead of loops, it’s slightly more efficient and more compact to use nested seq . So we get the unique solution:


 

restart;
CodeTools:-Usage(seq(seq(seq(seq(seq(seq(`if`(a+b+c=a1+b1+c1 and a^2+b^2+c^2=a1^2+b1^2+c1^2 and a*b*c=2*a1*b1*c1,[a,b,c,a1,b1,c1],NULL),c1=b1..20),b1=a1..20),a1=1..20),c=b..20),b=a..20),a=1..20));

memory used=168.13MiB, alloc change=0 bytes, cpu time=3.25s, real time=3.26s, gc time=140.62ms

 

[3, 5, 16, 1, 8, 15]

(1)

 


 

Download isys.mw

Your surface is a torus:

restart;
plot3d(eval([x,sqrt(x^2+y^2)*cos(s),sqrt(x^2+y^2)*sin(s)],[x=cos(t),y=2+sin(t)]), t=0..2*Pi, s=0..2*Pi, scaling=constrained, labels=[x,y,z]);

                       

 


 

restart;
r1:=2:  r2:=2*(1-cos(theta)):
A:=plot([r1,r2], theta=0..2*Pi, color=[red,blue], thickness=3, coords=polar):
B:=plot(r1, theta=Pi/2..3*Pi/2, color=green, coords=polar, filled):
C:=plot(r2, theta=-Pi/2..Pi/2, color=green, coords=polar, filled):
plots:-display(A,B,C, scaling=constrained);

 

 


 

Download shade.mw


Here is another shorter way:
 

restart;
r1:=2:  r2:=2*(1-cos(theta)):
plot([r1,r2], theta=0..2*Pi, color=[red,blue], thickness=3, coords=polar, filled, scaling=constrained);

 

 


 

Download shade1.mw


Here is a more automatic plotting for the intersection:

restart;
r1:=2:  r2:=2*(1-cos(theta)):
plot(min(r1,r2), theta=0..2*Pi, color=green, coords=polar, filled, scaling=constrained);

Edit.

The following approach is sometimes useful:

restart;
eq := x^2+floor(x)-10:
Student:-Calculus1:-Roots(eq);
identify(%);

    

 

The animation you see here is saved in GIF format. Each polygon from the list remains on the display for exactly 1 second (10 frames per second by default):

restart;
OneFrame:=proc(n)
local Circle, Polygon, Text, S;
uses plottools, plots;
Circle:=plot([cos(t),sin(t),t=0..2*Pi], color=grey, thickness=2);
Polygon:=polygon([seq([cos(2*Pi*k/n),sin(2*Pi*k/n)], k=1..n)], color=yellow);
S:=evalf(n*sin(2*Pi/n)/2);
Text:=textplot([[-0.7,-1.1,"Area of Circle = 3.14"],[0,-1.1,typeset("n","=",n)],[0.7,-1.1,typeset("Area of Polygon","=",evalf[3](S))]], font=[times,16]);

display(Text,Circle,Polygon, scaling=constrained, axes=none, title="Archimedes Approximation for Pi \n", titlefont=[times,bold,18]);
end proc:

plots:-display(seq(OneFrame(n)$10, n=[3,6,9,12,15,18,21,24,27,30,60]), insequence, size=[600,600]); 

                       

 


 

restart;
sys_ode := diff(F0(zeta), zeta, zeta)-b^2*F0(zeta)+G0(zeta)^2 = 0, diff(G0(zeta), zeta, zeta)-b^2*G0(zeta) = 0, 2*F0(zeta)+diff(H0(zeta), zeta) = 0;
ics := F0(0) = 0, G0(0) = 1, H0(0) = 0, F0(infinity) = 0, G0(infinity) = 0;

sol:=dsolve([sys_ode,ics]);
sol1:=eval(sol,b=1):
plot([eval(F0(zeta),sol1),eval(G0(zeta),sol1),eval(H0(zeta),sol1)], zeta=0..10, color=[red,blue,green]);

diff(diff(F0(zeta), zeta), zeta)-b^2*F0(zeta)+G0(zeta)^2 = 0, diff(diff(G0(zeta), zeta), zeta)-b^2*G0(zeta) = 0, 2*F0(zeta)+diff(H0(zeta), zeta) = 0

 

F0(0) = 0, G0(0) = 1, H0(0) = 0, F0(infinity) = 0, G0(infinity) = 0

 

{F0(zeta) = limit((1/2)*(-(1/3)*exp(b*zeta)*((exp(b*_a))^3*(exp(-b*_a))^3-9*(exp(b*_a))^2*(exp(-b*_a))^2+2*exp(-b*_a)*(exp(b*_a))^2+12*(exp(-b*_a))^2*exp(b*_a)+2*(exp(-b*_a))^3-9*exp(-b*_a)*exp(b*_a)+1)/(b*((exp(b*_a))^3-3*exp(-b*_a)*(exp(b*_a))^2+3*(exp(-b*_a))^2*exp(b*_a)-(exp(-b*_a))^3))+(1/3)*exp(-b*zeta)*((exp(b*_a))^3*(exp(-b*_a))^3-9*(exp(b*_a))^2*(exp(-b*_a))^2+2*(exp(b*_a))^3+12*exp(-b*_a)*(exp(b*_a))^2+2*(exp(-b*_a))^2*exp(b*_a)-9*exp(-b*_a)*exp(b*_a)+1)/(((exp(b*_a))^2-2*exp(-b*_a)*exp(b*_a)+(exp(-b*_a))^2)*b*(exp(b*_a)-exp(-b*_a)))-(-(1/3)*(exp(b*_a))^2/((exp(b*_a)-exp(-b*_a))^2*b*(exp(b*zeta))^3)+(exp(-b*_a))^2*exp(b*zeta)/((exp(b*_a)-exp(-b*_a))^2*b)+2*exp(-b*_a)*exp(b*_a)/((exp(b*_a)-exp(-b*_a))^2*b*exp(b*zeta)))*exp(b*zeta)+((1/3)*(exp(-b*_a))^2*(exp(b*zeta))^3/((exp(b*_a)-exp(-b*_a))^2*b)-(exp(b*_a))^2/((exp(b*_a)-exp(-b*_a))^2*b*exp(b*zeta))-2*exp(-b*_a)*exp(b*_a)*exp(b*zeta)/((exp(b*_a)-exp(-b*_a))^2*b))*exp(-b*zeta))/b, _a = infinity), G0(zeta) = limit(-exp(-b*_a)*exp(b*zeta)/(exp(b*_a)-exp(-b*_a))+exp(b*_a)*exp(-b*zeta)/(exp(b*_a)-exp(-b*_a)), _a = infinity), H0(zeta) = limit(-(1/3)*(-12*exp(-b*_a)*exp(b*_a)*zeta/(exp(b*_a)-exp(-b*_a))^2+(exp(b*_a))^2/((exp(b*_a)-exp(-b*_a))^2*(exp(b*zeta))^2*b)-(exp(-b*_a))^2*(exp(b*zeta))^2/((exp(b*_a)-exp(-b*_a))^2*b)-((exp(b*_a))^3*(exp(-b*_a))^3-9*(exp(b*_a))^2*(exp(-b*_a))^2+2*(exp(b*_a))^3+12*exp(-b*_a)*(exp(b*_a))^2+2*(exp(-b*_a))^2*exp(b*_a)-9*exp(-b*_a)*exp(b*_a)+1)/(((exp(b*_a))^2-2*exp(-b*_a)*exp(b*_a)+(exp(-b*_a))^2)*b*(exp(b*_a)-exp(-b*_a))*exp(b*zeta))-exp(b*zeta)*((exp(b*_a))^3*(exp(-b*_a))^3-9*(exp(b*_a))^2*(exp(-b*_a))^2+2*exp(-b*_a)*(exp(b*_a))^2+12*(exp(-b*_a))^2*exp(b*_a)+2*(exp(-b*_a))^3-9*exp(-b*_a)*exp(b*_a)+1)/(b*((exp(b*_a))^3-3*exp(-b*_a)*(exp(b*_a))^2+3*(exp(-b*_a))^2*exp(b*_a)-(exp(-b*_a))^3)))/b^2-(1/3)*(2*(exp(b*_a))^3*(exp(-b*_a))^3-18*(exp(b*_a))^2*(exp(-b*_a))^2+(exp(b*_a))^3+15*exp(-b*_a)*(exp(b*_a))^2+15*(exp(-b*_a))^2*exp(b*_a)+(exp(-b*_a))^3-18*exp(-b*_a)*exp(b*_a)+2)/(b^3*((exp(b*_a))^3-3*exp(-b*_a)*(exp(b*_a))^2+3*(exp(-b*_a))^2*exp(b*_a)-(exp(-b*_a))^3)), _a = infinity)}

 

 

 


 

Download diffeq.mw

Maple has the command  Student:-LinearAlgebra:-LinearSolveTutor  that solves systems of linear equations step by step, but unfortunately only if the matrix of the system is no more than 5 by 5. Below is a step-by-step solution using the Jordan Gauss method using my program  JordanGausse (all comments are in Russian):

system.mw

First 55 56 57 58 59 60 61 Last Page 57 of 290