Kitonum

21550 Reputation

26 Badges

17 years, 123 days

MaplePrimes Activity


These are replies submitted by Kitonum

@MiguelJesus 

restart;

n:=0:

S:=combinat[permute]([$ 3..14], 5):

for s in S do

F, H, J, K, L:=op(s):

A := 33 - K - L:

B := 1 + F - J:

C := -15 - F + J + K + L:

d := 15 + H - K:

E := 16 - F - H + J + K:

G := 34 - H - J - L:

i := 18 - J - K:

if  convert(map(x->is(x>=3 and x<=14), [A,B,C,d,E,G,i]), `and`) then n:=n+1: M[n]:=[A,B,C,d,E,G,i,F,H,J,K,L]  fi:

od:

M:=convert(M,list):

nops(M);  # Total number of solutions

M[1..10];

M[-10..-1];

@Axel Vogt   Excellent solution. It is more algorithmic and quicker than mine.

@Axel Vogt   7288<150565 

@Axel Vogt   

Here are 2 reasons for the sharp decrease in the number of solutions:
1) All variables are different.
2) The ranges for all variables are significantly narrowed.

@MiguelJesus   From the inequality  18-J-K>0  we get  J+K<18 . From this we get the bounds  1<=J<=17  and  1<=K<=17 .

Next from the inequality  33-K-L>0  we get  K+L<33  and because bounds for  K are already known, then we get  1<=L<=32 .  The bounds for  H  and  F  we get from the inequalities  34-H-J-L > 0  and  -15-F+J+K+L > 0 

For  F  we have   F< J+K+L-15 < J+K+K+L-15 < 18+33-15=36 

@Markiyan Hirnyk   For example, if necessary to find the total number of solutions.

@Markiyan Hirnyk   My method gives the complete list of all solutions in explicit form. In some situations, it may be important!

@Markiyan Hirnyk   In Maple 12, we immediately obtain the result

RealDomain[solve](r^6+r^4+r^2-10 = 0);

 

 

In Maple 16 additional command is needed:

RealDomain[solve](r^6+r^4+r^2-10 = 0);

allvalues([%]);

@Voltageist   Look closely at the output. You can see the exact answer to your problem:

@Preben Alsholm  Thanks for improvement. Another equivalent variant:

H:=G@@2;

 

@Markiyan Hirnyk   you're right! Cases  a=0  or  h=0  or  k=0  require special consideration.

@John 2014  Your problem is reduced to solving a system of linear equations (see the above link).

Solution for the base L1 (the remaining items can be solved similarly):

Poly:=x*(t^2+1)+y*(t-2)+z*(t+3);  Poly2:=a1*t^2+ a2*t+ a3;

Sys:={seq(coeff(Poly,t,n)=coeff(Poly2,t,n), n=0..2)}; #  The system of linear equations

solve(Sys, {x,y,z});

 

1) Use Maple syntax for imputs of formulas, for example,  a1*t^2+a2*t+a3 . Your formulas are incomprehensible.

2) See  the question

 

@mahmood180   Replace  Int  by  int

First 104 105 106 107 108 109 110 Last Page 106 of 133