Kitonum

21550 Reputation

26 Badges

17 years, 123 days

MaplePrimes Activity


These are replies submitted by Kitonum

@Muhammad Usman 

Expr:=(A^2/nu)^(1/3)*g*beta*q2[w]*sqrt(nu^2/A)*T(y, t)/((nu*A)^(1/3)*k)+(A^2/nu)^(1/3)*g*beta*T[infinity]/(nu*A)^(1/3)-(A^2/nu)^(1/3)*g*beta*V[infinity]/(nu*A)^(1/3)+(A^2/nu)^(1/3)*g*beta1*C(y, t)/(nu*A)^(1/3)-(A^2/nu)^(1/3)*g*beta1*C[infinity]/(nu*A)^(1/3);
simplify(Expr) assuming A>0, nu>0;
expand(%);

@torabi  I did not understand what this graph means.

If you want to plot  y(t) vs A  with a horizontal A-axis , then you need to go into 3-d space. You will have a surface such that its section with a plane  A=const  will be the corresponding plot of  y(t) :

restart;
P:=proc(A)
local omega, mu, B, eq1, eq2, eq3, dsys3;
omega := -2.667; mu := 10; B := 1;
eq1 := diff(x(t), t) = omega*x(t)-y(t)^2;
eq2 := diff(y(t), t) = mu*(z(t)-y(t));
eq3 := diff(z(t), t) = A*y(t)-B*z(t)+x(t)*y(t);
dsys3 := {eq1, eq2, eq3, x(0) = 10, y(0) = 10, z(0) = 10};
dsolve(dsys3, numeric);
end proc:

plot3d([(A,s)->A, (A,s)->s, (A,s)->eval(y(t),P(A)(s))], 1..10, 0..3, labels=[A,t,y(t)], labelfont=[times,16], numpoints=10000, axes=normal);

                

@torabi  In this case, what do you want to match A for each A?

@assma It is necessary to remove the square brackets and put the  multiplication sign where it was missed:
restart;
f:=(x,y)->exp(-0.96374054*x)*sin(2*Pi*y)*((-0.96374054)^2-4*Pi^2)/(2*Pi);
plots:-contourplot(f(x,y), x=-0.5..1.5, y=-0.5..1.5, numpoints=10000);

 

@Markiyan Hirnyk 

1. The same can be done simplier:

solve([x^3+x^2-y^2, -y+2*x+1], [x, y], explicit);

2.  I changed the head.

@Markiyan Hirnyk  @Carl Love  I do not understand why such intricate ways, when  RootFinding:-Isolate command  immediately gives the desired result:

restart;
with(RootFinding):
sol := Isolate([x^3+x^2-y^2, -y+2*x+1], [x, y]);  
 
Addition.  To solve this system, we can do without calling  RootFinding  package, applying  solve  command, but we will have to tinker to get rid of imaginary parts that are actually 0 :

restart;
sol := simplify(fnormal(evalf(solve([x^3+x^2-y^2, -y+2*x+1], [x, y], explicit))), zero);         

@mapleatha  In Maple 2015-2017 everything works properly. Execute  restart  command first:

restart;
subs([A=1/6,B=8/15,C=3/10], A/(s+1)+B/(s-2)+C/(s+3));

@max125 

1. Try yourself to find errors in your procedures.

2. Of course, this procedure can be written much shorter, for example:

Orthocenter:=proc(A::list, B::list, C::list)
local H;
if (B[1]-A[1])*(C[2]-A[2])=(B[2]-A[2])*(C[1]-A[1]) then error "The points A, B, C lie on one straight line" fi;
H:=proc(A, B, C)
local N;
N:=B-A;
N[1]*('x'-C[1])+N[2]*('y'-C[2])=0;
end proc;
solve({H(A,B,C), H(B,C,A)});
end proc:


Example of use:

Orthocenter([-3,3], [1,3], [-3,0]);

                                                  {x = -3, y = 3}

The problem is to symbolically prove that the determinant is 0. This is trivial:

LinearAlgebra:-Determinant(M):
is(%=0);
                                                           
  true


Another option:

simplify(LinearAlgebra:-Determinant(M));
                                                                0

 

@digerdiga  indexed  is the type of, for example,  a[n] :

whattype(a[n]);
                                  indexed

op(a[n]);
                                       n


The  evalindets  command  (see above)  applies  the procedure  t->op(t)*p+q+b[op(t)]  to any operand  t  of  eq1  of the  indexed  type

 

@Thomas Richard  Thank you very much! The third item on the list "Questions" helped.

I have the same problem in 32 bit Maple 2017.3 on Windows 10. The problem appeared about 2.5 months ago. Since then, I have reinstalled Maple and even been able to update it to Maple 2017.3, but the problem has remained (the standard GUI hangs on boot).

@pgl771  This is even simplier:

plot3d(y^2+x, x = 0 .. 2, y = x-2 .. x, orientation = [220, 75]);

@Les  For plotting in geom3d  package the  draw  command should be used:

draw(pp);

 

@Carl Love  The Iterator package was introduced in Maple 2016, therefore, unfortunately, OP will not be able to check the operation of your procedure.

First 56 57 58 59 60 61 62 Last Page 58 of 133