LeeHoYeung

Mr. Ho Yeung Lee

535 Reputation

10 Badges

12 years, 236 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Welcome August, February, July, May born girl And waited for her email to mavio@protonmail.com

MaplePrimes Activity


These are questions asked by LeeHoYeung

with(Groebner):
with(LinearAlgebra):
T := lexdeg([x1,x2,x3],[e1,e2,e3]);
hello1 := proc(xx,yy)
return MatrixMatrixMultiply(xx,yy);
end proc:
hello2 := proc(xx,yy)
return xx+yy- MatrixMatrixMultiply(xx,yy);
end proc:
m1 := Matrix(3, 3, {(1, 1) = -.737663975994461+0.*I, (1, 2) = -.588973463383001+0.*I, (1, 3) = .330094104689369+0.*I, (2, 1) = -.588012653178741+0.*I, (2, 2) = .320157823261769+0.*I, (2, 3) = -.742792089286083+0.*I, (3, 1) = -.331802619371428+0.*I, (3, 2) = .742030476217061+0.*I, (3, 3) = .582492741708719+0.*I});
m2 := Matrix(3, 3, {(1, 1) = -.742269137704830+0.*I, (1, 2) = -.590598631673326+0.*I, (1, 3) = .316590877121441+0.*I, (2, 1) = -.593533033362923+0.*I, (2, 2) = .360143915024171+0.*I, (2, 3) = -.719732518911068+0.*I, (3, 1) = -.311054762892221+0.*I, (3, 2) = .722142379823161+0.*I, (3, 3) = .617863510611693+0.*I});
m3 := Matrix(3, 3, {(1, 1) = -.751491355856820+0.*I, (1, 2) = -.574908634018322+0.*I, (1, 3) = .323636840615627+0.*I, (2, 1) = -.575794245520782+0.*I, (2, 2) = .332066412772496+0.*I, (2, 3) = -.747123071744916+0.*I, (3, 1) = -.322058579916187+0.*I, (3, 2) = .747804760642505+0.*I, (3, 3) = .580574121936877+0.*I});
AA := hello1(m1, m2);
BB := hello2(m1, m2);
GB := Basis([e1- AA,e2- BB],T):
NormalForm(m3, GB, T);

A := `<|>`(`<,>`(1, 2,3), `<,>`(2, 3, 0), `<,>`(2, 0, 0));
v, EigenVector1:= Eigenvectors(A);
FirstEigenValue := v[1];
SecondEigenValue:= v[2];
ThirdEigenValue:= v[3];
NewMatrix3 := Matrix([[x1, x2, x3],
[x2, x3,0],
[x2,0 , 0]]);
Hello :=solve([MatrixMatrixMultiply(NewMatrix3,Matrix([[EigenVector1[1][1]],[ EigenVector1[2][1]],[ EigenVector1[3][1]]]))[1][1] = FirstEigenValue* Matrix([[EigenVector1[1][1]],[ TestPredictedProj1[2][1]],[ EigenVector1[3][1]]])[1][1],
MatrixMatrixMultiply(NewMatrix3,Matrix([[EigenVector1[1][2]],[ EigenVector1[2][2]],[ EigenVector1[3][2]]]))[2][1] = SecondEigenValue* Matrix([[EigenVector1[1][2]],[ EigenVector1[2][2]],[ EigenVector1[3][2]]])[1][1],
MatrixMatrixMultiply(NewMatrix3,Matrix([[EigenVector1[1][3]],[ EigenVector1[2][3]],[ EigenVector1[3][3]]]))[3][1] = ThirdEigenValue* Matrix([[EigenVector1[1][3]],[ EigenVector1[2][3]],[ EigenVector1[3][3]]])[1][1]
], [x1,x2,x3]);

 

i am confused at right hand side

 FirstEigenValue* Matrix([[EigenVector1[1][1]],[ TestPredictedProj1[2][1]],[ EigenVector1[3][1]]])[1][1]

there are three values, i do not know use which value in each equation

 

actually, my expectation is simple, just find back the original matrix from eigenvector and eigenvalue

what is the name of this decomposition?

Y = S^-1*X*S, where S is unitary fourier transform

do maple have function to solve this?

How to calculate a matrix's self adjoint matrix if given any matrix?

 

<Px, y> = <x, Py>

hermitian is a kind of self adjoint

L:=Matrix(H,shape=hermitian);

is above command convert a general matrix H into self adjoint L?

any other methods

after a matrix operation, the result is not exactly the matrix i want

there is around 0.0001 difference difference in all element in matrix

how to deal with this random difference in order to be exact?

First 105 106 107 108 109 110 111 Last Page 107 of 141