LeeHoYeung

Mr. Ho Yeung Lee

535 Reputation

10 Badges

12 years, 234 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Welcome August, February, July, May born girl And waited for her email to mavio@protonmail.com

MaplePrimes Activity


These are questions asked by LeeHoYeung

v=u+at                      (1)
s=u*t+1/2*a*t^2        (2)

below 3 equations, can substitute  (1)  into it to form (2)
s=1/2*(u+v)*t       (3)
v^2=u^2+2*a*s    (4)
s=v*t-1/2*a*t^2    (5)

can these 5 equations be considered as a solution set of solve function?

or

is only first 2 equations be a solution set?

if so, number of equations less than 5 variables, is there something missing?
 

https://drive.google.com/file/d/0Bxs_ao6uuBDUNmd5ZVJtX29GT3c/view?usp=sharing
https://drive.google.com/file/d/0Bxs_ao6uuBDUSUdHSTcwSEQtS3M/view?usp=sharing

would like to return K map of P1

Summation expression for logic only consider 1 but how about wildcard x ?

if consider wildcard x as 1 too, then will use below

source = [[0,0,1,0],[0,0,1,1],[0,1,0,1],[0,1,1,0],[0,1,1,1],[1,0,0,0],[1,0,0,1],[1,0,1,0],[1,0,1,1],[1,1,0,0],[1,1,0,1],[1,1,1,0],[1,1,1,1]];
i use Quine Mccluskey algorithm

got result below

wildcard is 5 or x
[[0, 5, 1, 5], [5, 0, 1, 5], [5, 5, 1, 0], [1, 0, 5, 5], [1, 5, 0, 5], [1, 5, 5, 0], [5, 5, 1, 1], [5, 1, 5, 1], [5, 1, 1, 5], [1, 5, 5, 1], [1, 5, 1, 5], [1, 1, 5, 5]]
A'C + B'C + CD' + AB' + AC' + AD' + CD + BD + BC + AD + AC + AB
 
table1 = [[0,0,0,0],
[0,0,0,1],
[0,0,1,0],
[0,0,1,1],
[0,1,0,0],
[0,1,0,1],
[0,1,1,0],
[0,1,1,1],
[1,0,0,0],
[1,0,0,1],
[1,0,1,0],
[1,0,1,1],
[1,1,0,0],
[1,1,0,1],
[1,1,1,0],
[1,1,1,1]];
 
loand(lonot(tt[0]),tt[2])
loand(lonot(tt[1]),tt[2])
loand(lonot(tt[3]),tt[2])
loand(lonot(tt[1]),tt[0])
loand(lonot(tt[2]),tt[0])
loand(lonot(tt[3]),tt[0])
loand(tt[2],tt[3])
loand(tt[1],tt[3])
loand(tt[1],tt[2])
loand(tt[0],tt[3])
loand(tt[0],tt[2])
loand(tt[0],tt[1])
 
loor(loor(loor(loor(loor(loor(loor(loor(loor(loor(loor(loand(lonot(tt[0]),tt[2]),
loand(lonot(tt[1]),tt[2])),
loand(lonot(tt[3]),tt[2])),
loand(lonot(tt[1]),tt[0])),
loand(lonot(tt[2]),tt[0])),
loand(lonot(tt[3]),tt[0])),
loand(tt[2],tt[3])),
loand(tt[1],tt[3])),
loand(tt[1],tt[2])),
loand(tt[0],tt[3])),
loand(tt[0],tt[2])),
loand(tt[0],tt[1]));
def lonot(z):
    if z == 1:
        return 0
    else:
        return 1
def loand(a, b):
    if a == 1 and b == 1:
        return 1
    else:
        return 0
def loor(a, b):
    if a == 0 and b == 0:
        return 0
    else:
        return 1
#A'C + B'C + AB' + CD + A'BD
for tt in table1:
    print loor(loor(loor(loor(loor(loor(loor(loor(loor(loor(loor(loand(lonot(tt[0]),tt[2]),
loand(lonot(tt[1]),tt[2])),
loand(lonot(tt[3]),tt[2])),
loand(lonot(tt[1]),tt[0])),
loand(lonot(tt[2]),tt[0])),
loand(lonot(tt[3]),tt[0])),
loand(tt[2],tt[3])),
loand(tt[1],tt[3])),
loand(tt[1],tt[2])),
loand(tt[0],tt[3])),
loand(tt[0],tt[2])),
loand(tt[0],tt[1]));
 
finally i use python to verify
return
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1
 
seems correct if wildcard is 1 too, but
can boolean simplify function simplify this
A'C + B'C + CD' + AB' + AC' + AD' + CD + BD + BC + AD + AC + AB
 
to
 
C + A + B.D   which is
P1 = D + Q0 + Q1.N in png file ?

solve(diff(-1/x,x) = (-1/x)^(b), b);

originally is 2, but it use ln(....) to express
 
if start from substitute, it seems need to replace manually.

solve(subs(a(x)=-1/x,diff(a(x),x) = (a(x))^(b)), b);

 
goal is to find b in equation below
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)^(b), b);
(2*x+1)/(-1+x)^2-(2*(x^2+x+1))/(-1+x)^3 = ((x^2+x+1)/(-1+x)^2)^(b)
 
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)*(b), b);
updated

after refer from

https://en.wikipedia.org/wiki/List_of_representations_of_e

exponential1 := sum((1/n!), n=0..infinity);
exponential1 is not a decimal number, it is exp(1)
 
hoyeung1:= sum((Int(exp(LambertW(1/(-1+x))*(-1+x)), x)), x=0..infinity);
 
hoyeung2:= sum((Int(exp(LambertW(1/(-1+x!))*(-1+x!)), x)), x=0..infinity);
 
how to evalute hoyeung1 or hoyeung2 as a decimal number?
 
how to evalute hoyeung^x as a decimal number function is func1 := proc(x) return hoyeung^x end proc:
 
but i do not know whether sum((Int(exp(LambertW(1/(-1+x))*(-1+x)), x))*m^x, x=0..infinity) = hoyeung^x
 
can limit(1+(Int(exp(LambertW(1/(-1+x))*(-1+x)), x)))^x, x=infinity) = hoyeung^1 ?

sol := dsolve(diff(ln(y(x)),x) = y(x)^(1/(1-y(x))), y(x));
x-Intat(_a^(-(-2+_a)/(-1+_a)), _a = y(x))+_C1 = 0
 

the solution is not y(x) = , but y(x) at the right hand side

First 32 33 34 35 36 37 38 Last Page 34 of 141