LeeHoYeung

Mr. Ho Yeung Lee

535 Reputation

10 Badges

12 years, 240 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Welcome August, February, July, May born girl And waited for her email to mavio@protonmail.com

MaplePrimes Activity


These are questions asked by LeeHoYeung

X belongto A, eigenvector(X) = 0

from this statement , 

using linearalgebra package eigenvectors function

the eigenvector matrix [3][1],[3][2],[3][3] are 1 , contradict 1=0

so, need to find another kind of eigenvector in terms of algebra 

using original basic calculation solve, however got error

 

m := Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]]);
eigenvector1 := Eigenvectors(m);
solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0,
eigenvector1[2][3][1]=0, eigenvector1[2][3][2]=0, eigenvector1[2][3][3]=0]
);

solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0]
);

 

eigenvalue1 :=
(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue2 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue3 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+

...

 

solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue1,0,0],[0,eigenvalue1,0],[0,0,eigenvalue1]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue2,0,0],[0,eigenvalue2,0],[0,0,eigenvalue2]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue3,0,0],[0,eigenvalue3,0],[0,0,eigenvalue3]]), Matrix([[x],[y],[z]])),[x,y,z]);

 

got error when using solve

> solve(MatrixMatrixMultiply(Matrix([[a1, a2, a3], [a4, a5, a6], [a7, a8, a9]])-Matrix([[eigenvalue1, 0, 0], [0, eigenvalue1, 0], [0, 0, eigenvalue1]]), Matrix([[x], [y], [z]])), [x, y, z]);
Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({set, list})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received Matrix(3, 1, {(1, 1) = ((2/3)*a1-(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a6*a5-72*a7*a3*a5-72*a8*a6*a1-72*a9*a4*a2+48*a9*a5*a1-12*a9*a1^2-12*a5*a1^2+8*a1^3-12*a9^2*a1-12*a5^2*a1-12*a9^2*a5-12*a9*a5^2+36*a8*a6*a9+36*a7*a3*a9+36*a4*a2*a1+36*a4*a2*a5+8*a9^3+8*a5^3+12*(54*a7*a2^2*a6*a4*a1+114*a8*a6*a9*a1*a4*a2+6*a8*a6*a9*a1*a7*a3+54*a8*a4*a3^2*a7*a9-60*a9*a1^2*a8*a6*a5-60*a8*a6*a7*a3*a5^2-60*a8*a6*a4*a2*a9^2-24*a9*a1*a4^2*a2^2+6*...

MatrixOperation := module() option package;  export `+`, LinearAlgebra;
    `+` := proc(a::float, b::float) option overload;
 :-`+`(map(x->x^2,a),map(x->x^2,b));
    end proc;
end module;


with(MatrixOperation);
with(LinearAlgebra):
m := Matrix([[1,2],[3,4]]);
L := MatrixMatrixMultiply(m,m);

1 2  1 2
3 4  3 4

1*1+2*3 = 1 + 6 = 1 after overload + with a+b-a*b
1*2+2*4 = 2 + 8 = -6

L should be Matrix([[1, -6],[....]])

 http://en.wikibooks.org/wiki/Linear_Algebra/

Representing_Linear_Maps_with_Matrices

 

how to calculate the first step

(2,0) -> (1,1,1) and (1,4) -> (1,2,0)

how to use maple command to get (1,1,1) and (1,2,0)

how to use maple command to calculate rep(h)

 

to get (0,-1/2,1) and (1,-1,0)

http://en.wikibooks.org/wiki/Linear_Algebra

/Representing_Linear_Maps_with_Matrices

> local `+`;
Error, unable to parse

 

meet difficulty running script in maple 12

restart;  local `+`;  `+`:=proc(a,b) :-`+`(a^`~2`,b^`~2`) end proc;

First 93 94 95 96 97 98 99 Last Page 95 of 141