Mariusz Iwaniuk

1571 Reputation

14 Badges

9 years, 289 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are answers submitted by Mariusz Iwaniuk

This package is build-in Maple,you don't need to download anything:

Execute:

with(Student[Basics]);

LinearSolveSteps((x+1)/(2*y*z) = 4*y^2/z+3*x/y, x);

LinearSolveSteps function have some limitation only  for linear equations give steps.

LinearSolveSteps("x^2 -2*x+1 = 0", x); #Nonlinear equation. It doesn't work.

 

 

Eliminating variable m1 and m2 from equations, then we have only eq. with 2 variables k1 and k2.

Ploting we see they do not intersect anywhere, even at point {0,0}.


 

restart

sys := {(k1*m1+k1*m2+k2*m1+sqrt(k1^2*m1^2+2*k1^2*m1*m2+k1^2*m2^2+2*k1*k2*m1^2-2*k1*k2*m1*m2+k2^2*m1^2))/(2*m1*m2) = (2*Pi*8.78)^2, .8347192842*k1/m1 = (2*Pi*4.8515)^2, -(-30.85287127*k1-k2)/m2 = (2*Pi*8.78)^2, -(-k1*m1-k1*m2-k2*m1+sqrt(k1^2*m1^2+2*k1^2*m1*m2+k1^2*m2^2+2*k1*k2*m1^2-2*k1*k2*m1*m2+k2^2*m1^2))/(2*m1*m2) = (2*Pi*4.8515)^2}

{.8347192842*k1/m1 = 929.2055780, -(-30.85287127*k1-k2)/m2 = 3043.328048, -(1/2)*(-k1*m1-k1*m2-k2*m1+(k1^2*m1^2+2*k1^2*m1*m2+k1^2*m2^2+2*k1*k2*m1^2-2*k1*k2*m1*m2+k2^2*m1^2)^(1/2))/(m1*m2) = 929.2055780, (1/2)*(k1*m1+k1*m2+k2*m1+(k1^2*m1^2+2*k1^2*m1*m2+k1^2*m2^2+2*k1*k2*m1^2-2*k1*k2*m1*m2+k2^2*m1^2)^(1/2))/(m1*m2) = 3043.328048}

(1)

eq2 := eliminate(sys, {m1, m2})

[{m1 = 0.8983149735e-3*k1, m2 = 0.1013787235e-1*k1+0.3285876462e-3*k2}, {-0.2219750257e-1*k1^2-0.2848636636e-3*k1*k2+(1/2)*(0.1217974307e-3*k1^4-0.9347355846e-5*k1^3*k2+0.3245892274e-6*k1^2*k2^2)^(1/2), 0.2944183889e-2*k1^2-0.3391728651e-3*k1*k2+(1/2)*(0.1217974307e-3*k1^4-0.9347355846e-5*k1^3*k2+0.3245892274e-6*k1^2*k2^2)^(1/2)}]

(2)

plots:-implicitplot([eq2[2, 1] = 0, eq2[2, 2] = 0], k1 = -1 .. 1, k2 = -10 .. 10, view = [-1 .. 1, -10 .. 10], gridrefine = 5, color = ["Red", "Blue"], rational, thickness = 3)

 

plots:-implicitplot([eq2[2, 1] = 0, eq2[2, 2] = 0], k1 = -0.1e-3 .. 0.1e-3, k2 = -0.1e-1 .. 0.1e-1, view = [-0.1e-3 .. 0.1e-3, -0.1e-1 .. 0.1e-1], gridrefine = 5, color = ["Red", "Blue"], rational, thickness = 3)

 

``


 

Download No_solutions.mw

You must add 4 more (intial,boundary) condition if you what to solve by numeric method.
e.g. :{ U(0, t) = 1, U(1, t) = 0, V(0, t) = 0, V(1, t) = 0}


 

PDESYS := [diff(U(x, t), t)-(diff(U(x, t), x, x))-2*U(x, t)*(diff(U(x, t), x))+diff(U(x, t)*V(x, t), x), diff(V(x, t), t)-(diff(V(x, t), x, x))-2*V(x, t)*(diff(V(x, t), x))+diff(U(x, t)*V(x, t), x)]

[diff(U(x, t), t)-(diff(diff(U(x, t), x), x))-2*U(x, t)*(diff(U(x, t), x))+(diff(U(x, t), x))*V(x, t)+U(x, t)*(diff(V(x, t), x)), diff(V(x, t), t)-(diff(diff(V(x, t), x), x))-2*V(x, t)*(diff(V(x, t), x))+(diff(U(x, t), x))*V(x, t)+U(x, t)*(diff(V(x, t), x))]

(1)

NULL

IBC := [U(x, 0) = sin(x), V(x, 0) = sin(x), U(0, t) = 1, U(1, t) = 0, V(0, t) = 0, V(1, t) = 0]

[U(x, 0) = sin(x), V(x, 0) = sin(x), U(0, t) = 1, U(1, t) = 0, V(0, t) = 0, V(1, t) = 0]

(2)

sol := pdsolve(PDESYS, IBC, numeric)

_m489011961280

(3)

p1 := sol:-plot(V(x, t), t = 1/8, numpoints = 100, x = 0 .. 1, color = ["Blue"], legend = ["V(x,t)"])

p2 := sol:-plot(U(x, t), t = 1/20, numpoints = 100, x = 0 .. 1, color = ["Green"], legend = ["U(x,t)"])

plots:-display({p1, p2})

 

sol:-plot3d(U(x, t), t = 0 .. 1, x = 0 .. 1, grid = [100, 100])

 

sol:-plot3d(V(x, t), t = 0 .. 1, x = 0 .. 1, grid = [100, 100])

 

``


Executed in Maple 2018 !!!

Download pdesys.mw

Y := proc (delta, b, n) 
if n = 0 then 1/(b^2+1) 
elif n = 1 then arctan(1/b) 
elif n = 2 then 1+(1/2)*ln(b^2+1)-b*arctan(1/b) 
elif n = 3 then delta-(3/2)*b-(1/2)*b*ln(b^2+1)+(1/2)*arctan(1/b)*(b^2-1) 
elif n = 4 then (1/2)*delta^2-b*delta+(11/12)*b^2-11/36+(1/12)*ln(b^2+1)*(3*b^2-1)+(1/6)*b*arctan(1/b)*(3-b^2) 
elif n = 5 then (1/3)*delta^3-(1/2)*delta^2*b+(1/6)*delta*(3*b^2-1)+(25/72)*b-(25/72)*b^3+(1/12)*b*log(b^2+1)*(1-b^2)+(1/24)*arctan(1/b)*(1-6*b^2+b^4) 
elif n = 6 then (1/4)*delta^4-(1/3)*delta^2*b+(1/12)*delta^2*(3*b^2-1)+(1/6)*b*delta*(1-b^2)+(137/1440)*b^4-(137/720)*b^2+137/7200+(1/240)*log(b^2+1)*(5*b^4-10*b^2+1)+(1/120)*b*arctan(1/b)*(-5+10*b^2-b^4) 
elif n = 7 then (1/5)*delta^5-(1/4)*delta^4*b+(1/18)*delta^3*(3*b^2-1)+(1/12)*delta^2*b*(1-b^2)+(1/120)*delta*(5*b^4-10*b^2+1)-(49/2400)*b+(49/720)*b^3-(49/2400)*b^5+(1/720)*b*log(b^2+1)*(-3*b^4+10*b^2-3)+(1/720)*arctan(1/b)*(-1+15*b^2-15*b^4+b^6) 
end if 
end proc:

plot(Y(5, b, 7), b = 0 .. 10); # Example of use

 

u1 := proc (x, y) options operator, arrow; 1-exp(a*x)*cos(2*Pi*y) end proc;

a := -0.39323780;

evalf(int(u1(x, y)^2, y = -.5 .. 1.5, x = -.5 .. 1.5));

#5.493248990

#OR:

u := unapply(1-exp(a*x)*cos(2*Pi*y), [x, y]);

a := -0.39323780;

evalf(int(u(x, y)^2, y = -.5 .. 1.5, x = -.5 .. 1.5));

#OR:

u := 1-exp(a*x)*cos(2*Pi*y);

a := -0.39323780;

evalf(int(u^2, y = -.5 .. 1.5, x = -.5 .. 1.5));

Use  ExcelTools for import file.

 


 

Download testxlsx.mw

 

I don't have Maple V (This is an obsolete version,you need upgrade).

integral := Int(2*(sin(theta)/cos(theta))^(2*p-1), theta = 0 .. (1/2)*Pi);

with(IntegrationTools):

integral2 := Change(convert(integral, tan), tan(theta) = sqrt(t));

`assuming`([value(integral2)], [0 < p and p < 1]);

#Answer is: Pi*csc(Pi*p)

integral.mw

Executed in Maple 2018

Maple can't simplify better, probably V is not a solution of pde[1].

See attached file:

solution_ver_3.mw

BVP := [4*(diff(u(x, t), t))-9*(diff(u(x, t), x, x))-5*u(x, t) = 0, u(0, t) = 0, u(6, t) = 0, u(x, 0) = sin((1/6)*Pi*x)^2];

sol := pdsolve(BVP);

plot3d(eval(rhs(sol), infinity = 10), x = 0 .. 6, t = 0 .. 4);

OR:

plot3d(subs(infinity = 10, rhs(sol)), x = 0 .. 6, t = 0 .. 4);

OR:

plot3d(subs(infinity = 10, op(2, sol)), x = 0 .. 6, t = 0 .. 4)

 I am no expert in special functions,but adding comand "_EnvLegendreCut"

_EnvLegendreCut := 1 .. infinity;

plot(LegendreQ((1/2)*sqrt(5)-1/2, x), x = -1 .. 1);

for more info execute command:

?LegendreQ;

restart;

with(ListTools):

l := seq(n, n = -10 .. 20);

[l];

l1 := Flatten([Transpose([[seq(n, n = -10 .. 20)], [seq(n, n = 1 .. 31)]])]);

l2 := Transpose([[seq(n, n = -10 .. 20)], [seq(n, n = 1 .. 31)]]);

l3 := select(type, [seq(n, n = 115 .. 231)], 'odd');

[l3];

In yours first example Maple gives incorect answer.It's a Bug.!!!

 

evalf[10](sum(2^n*floor(2^n), n = 1 .. infinity));

#-1.333333333

evalf[10](Sum(2^n*floor(2^n), n = 1 .. infinity));# Big 'S' in Sum

#-1.333333333

`assuming`([sum(2^n*floor(2^n), n = 1 .. m)], [m > 0]);

#(1/3)*2^(m+1)*floor(2^(m+1))-4/3

limit(%, m = infinity)

#infinity

Second one give a correct answer:

evalf[10](sum(5^(n-1)*floor((1/4)*5^n), n = 1 .. infinity));

#Float(infinity)

evalf[10](Sum(5^(n-1)*floor((1/4)*5^n), n = 1 .. infinity));# Big 'S' in Sum

#If Maple dosen't know the answer then: Returns unevaluated,not infinity in this case.

`assuming`([sum(5^(n-1)*floor((1/4)*5^n), n = 1 .. m)], [m > 0]);

#Returns unevaluated

 

Executed in Maple 2018.

Using CauchyPrincipalValue =true:

`assuming`([int(exp(I*x*t)/((x-a)*(x+a)), x = -infinity .. infinity, CauchyPrincipalValue = true)], [a > 0, t > 0])

#(1/2*I)*Pi*(exp(I*a*t)-exp(-I*a*t))/a

int.mw

Exectuted in Maple 2018.

remove[flatten](x-> x = 0, [seq(sin((1/4)*k*Pi), k = 1 .. 8)]);

First 12 13 14 15 16 17 18 Page 14 of 20