Test007

50 Reputation

5 Badges

5 years, 79 days

MaplePrimes Activity


These are questions asked by Test007

Does anyone know why pdetest is not giving [0, 0, 0] for the solution of pdsolve?
 

restart

eq := diff(u(x, t), t)-k*(diff(u(x, t), x, x)) = 0

diff(u(x, t), t)-k*(diff(diff(u(x, t), x), x)) = 0

(1)

ic := u(x, 0) = g(x)

u(x, 0) = g(x)

(2)

bc := (D[1](u))(0, t) = 0, eval(diff(u(x, t), x)+u(x, t), x = 1) = 0

(D[1](u))(0, t) = 0, eval(diff(u(x, t), x), {x = 1})+u(1, t) = 0

(3)

sol := `assuming`([simplify(pdsolve([eq, ic, bc]))], [k > 0, 0 < x and x < 1, t > 0])

u(x, t) = `casesplit/ans`(Sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And((sin(lambda[n])*lambda[n]-cos(lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])})

(4)

`assuming`([simplify(pdetest(sol, [eq, ic, bc]))], [k > 0, 0 < x and x < 1, t > 0])

[-(diff(diff(`casesplit/ans`(sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])}), x), x))*k+diff(`casesplit/ans`(sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])}), t), `casesplit/ans`(Sum(4*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])})-g(x), eval(diff(`casesplit/ans`(Sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])}), x), {x = 0}), eval(diff(`casesplit/ans`(Sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n]*x)*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])}), x), {x = 1})+`casesplit/ans`(Sum(4*exp(-k*lambda[n]^2*t)*lambda[n]*cos(lambda[n])*(Int(g(x)*cos(lambda[n]*x), x = 0 .. 1))/(2*lambda[n]+sin(2*lambda[n])), n = 0 .. infinity), {And(-(1/2)*(I*lambda[n]*exp(I*lambda[n])-I*lambda[n]*exp(-I*lambda[n])+exp(I*lambda[n])+exp(-I*lambda[n]))/cos(lambda[n]) = 0, 0 < lambda[n])})]

(5)

``


 

Download PDE.mw

In the OrthogonalExpansions package, how can I change the summation variable to be n instead of i?

The general solution of x2y'' + 3xy' + λy = 0 is (from Example 4 here)

Why does dsolve(x^2*diff(y(x), x, x) + 3*x*diff(y(x), x) + lambda*y(x) = 0) give only the third case instead of the whole solution?

I want to solve the following IBVP:

However, the answer given by pdsolve doesn't give  with pdetest.


 

restart

eq := diff(u(x, t), t)-k*(diff(u(x, t), x, x)) = 0

diff(u(x, t), t)-k*(diff(diff(u(x, t), x), x)) = 0

(1)

ic := u(x, 0) = 0

u(x, 0) = 0

(2)

bc := u(0, t) = p(t)

u(0, t) = p(t)

(3)

sol := `assuming`([simplify(pdsolve([eq, ic, bc]))], [k > 0, x > 0, t > 0])

u(x, t) = (1/2)*x*(Int(p(zeta)*exp(-(1/4)*x^2/(k*(t-zeta)))/(t-zeta)^(3/2), zeta = 0 .. t))/(Pi^(1/2)*k^(1/2))

(4)

`assuming`([simplify(pdetest(sol, [eq, ic, bc]))], [k > 0, t > 0, x > 0])

[(1/2)*x*(-t*(Int(p(zeta)*exp(-(1/4)*x^2/(k*(t-zeta)))/(t-zeta)^(7/2), zeta = 0 .. t))+limit(p(zeta)*exp(-(1/4)*x^2/(k*(t-zeta)))/(t-zeta)^(3/2), zeta = t)+Int(p(zeta)*exp(-(1/4)*x^2/(k*(t-zeta)))*zeta/(t-zeta)^(7/2), zeta = 0 .. t)+Int(p(zeta)*exp(-(1/4)*x^2/(k*(t-zeta)))/(t-zeta)^(5/2), zeta = 0 .. t))/(Pi^(1/2)*k^(1/2)), 0, -p(t)]

(5)

``

Download IBVP.mw

From Wikipedia,

However, when I plug the formula of u(x, t) into Maple, it doesn't seem to satisfy the PDE and is stuck evaluating.
 

restart

eq := diff(u(x, t), t)-k*(diff(u(x, t), x, x)) = f(x, t)

diff(u(x, t), t)-k*(diff(diff(u(x, t), x), x)) = f(x, t)

(1)

ic := u(x, 0) = 0

u(x, 0) = 0

(2)

"G(x,t):=1/(sqrt(4*pi*k*t))exp(-(x^(2))/(4*k*t))"

proc (x, t) options operator, arrow, function_assign; exp(-(1/4)*x^2/(k*t))/sqrt(4*pi*k*t) end proc

(3)

ans := u(x, t) = int(G(x-y, t-s)*f(y, s), y = -infinity .. infinity, s = 0 .. t)

u(x, t) = (1/2)*(int((int(exp(-(1/4)*(x-y)^2/(k*(t-s)))*f(y, s), y = -infinity .. infinity))/(pi*k*(t-s))^(1/2), s = 0 .. t))

(4)

`assuming`([simplify(pdetest(ans, [eq, ic]))], [t > 0])

``


 

Download InhomoHeat.mw

1 2 3 Page 2 of 3