dharr

Dr. David Harrington

8977 Reputation

22 Badges

21 years, 177 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

Here's one way.

results2 := Matrix(map2(eval, [N, tbo, two], [seq(results)]));

PrimesQuestion.mw

The following URL finds my Orbitals package

https://www.maplesoft.com/Applications/Detail.aspx?id=4865

but substituting your ID doesn't find anything, suggesting that the ID is no longer valid or the application is not there.

It is much easier to use a code edit region. But you can do it your intended way with EvalString instead of Run. GetVariable returns the variable to Maple. Here are both ways:

python.mw

As the help page for try says, the "too many levels of recursion" error is one of the few that can't be caught.

The paper doesn't make much sense.

restart

For solution 33

u := -sqrt(2)*alpha*sech(-epsilon*t+x)/beta

-2^(1/2)*alpha*sech(epsilon*t-x)/beta

The integral is independent of epsilon, as expected

U := (1/2)*(int(u^2, x = -infinity .. infinity))

2*alpha^2/beta^2

And so its derivative wrt epsilon is zero. The value given in the paper is just a numerical approximation of zero

dU := diff(U, epsilon); eval(dU, epsilon = -1)

0

0

For solution 31

restart

params := {A1 = 1, A2 = 2, beta = 1, lambda = -2, m = 2, mu = 1, t = 1}

{A1 = 1, A2 = 2, beta = 1, lambda = -2, m = 2, mu = 1, t = 1}

u := sqrt((-eps^2+1)*lambda^2)*((2*(m*(m+lambda)-mu))/(lambda*(m+(A2-A1*sqrt(mu)-A2*sqrt(mu)*(-eps*t+x))/(A1+A2*(-eps*t+x))))-1)/(sqrt(2)*beta)

(1/2)*((-eps^2+1)*lambda^2)^(1/2)*2^(1/2)*(2*(m*(m+lambda)-mu)/(lambda*(m+(A2-A1*mu^(1/2)-A2*mu^(1/2)*(-eps*t+x))/(A1+A2*(-eps*t+x))))-1)/beta

Complex values for plot if we use eps=-2 because of the sqrt((-eps^2+1)*lambda^2) factor. For eps = 0.1:

plot(eval(u, `union`(params, {eps = .1})), x = -20 .. 20)

Integral is infinite

U := (1/2)*(Int(u^2, x = -infinity .. infinity)); value(%)

signum((4*mu^(3/2)*lambda-2*mu^(1/2)*m*lambda^2-4*mu^(1/2)*m^2*lambda-m^2*lambda^2-4*m^3*lambda-4*m^4-mu*lambda^2+4*m*mu*lambda+8*m^2*mu-4*mu^2)*(eps-1)*(eps+1)/(beta^2*(mu^(1/2)-m)^2))*infinity+(1/2)*piecewise(Im((-A2*mu^(1/2)*eps*t+A2*eps*m*t+A1*mu^(1/2)-A1*m-A2)/(A2*(mu^(1/2)-m))) = 0, -signum((lambda*m+m^2-mu)^2*(eps-1)*(eps+1)/(beta^2*(mu^(1/2)-m)^4))*infinity, 0)

If we integrate under the integral, the result is still infinite.

value(diff(U, eps))

(1/2)*piecewise(Im((-A2*mu^(1/2)*eps*t+A2*eps*m*t+A1*mu^(1/2)-A1*m-A2)/(A2*(mu^(1/2)-m))) = 0, undefined, signum(eps*(4*mu^(3/2)*lambda-2*mu^(1/2)*m*lambda^2-4*mu^(1/2)*m^2*lambda-m^2*lambda^2-4*m^3*lambda-4*m^4-mu*lambda^2+4*m*mu*lambda+8*m^2*mu-4*mu^2)/(beta^2*(mu^(1/2)-m)^2))*infinity)

Try some numerical values over the suggested numerical x range

U20 := (1/2)*(Int(eval(u^2, params), x = -20 .. 20))

(1/2)*(Int(2*(-eps^2+1)*(1/(2+(1+2*eps-2*x)/(1-2*eps+2*x))-1)^2, x = -20 .. 20))

Result is still infinity.

simplify(diff(U20, eps)); evalf(eval(%, eps = -2))

8*(Int((2+(-3-2*x)*eps)/(3-2*eps+2*x)^3, x = -20 .. 20))

Float(undefined)

``

NULL

Download S-test.mw

It is one of the HTML symbols. If you enter it in 1D as `≃` then select the output, right-click and choose comtext panel, one of the options is add to favourites.

With inttrans, I can often get an answer by assuming positive, even though this might not be the case. One can then check if it makes sense; not sure about that in this case. I didn't see any intermittent issues.

Download fourier.mw

[Updated. I've realised C simplifies to zero, so it can be simplified further. There are different cases for zero or positive A, and zero, positive or negative B.

restart

NULL

ineq := simplify((Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+(2*(Cr*b-1))*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2 > (((alpha*Cr*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*rho0+(2*(Cr*b-1))*(delta+Cn-Pr-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(delta+Cn-Pr-1))^2)

(((alpha*Cr*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*rho0+2*(Cr*b-1)*(delta+Cn-Pr-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(delta+Cn-Pr-1))^2 < (Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+2*(Cr*b-1)*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2

ineq  as output is in the form lhs < rhs, so let's change that to rhs - lhs > 0, and leave off the > 0, i.e., we want to find t that makes q positive, under the assumption that all the named quantities are positive.

q := collect(rhs(ineq)-lhs(ineq), t); degree(q, t)

2

In the form A*t^2+B*t+C, A is explicitly nonnegative (whole expression is squared). Do you know if A can be zero?

A := simplify(coeff(q, t, 2)); `assuming`([is(A >= 0)], [positive])

(Cr*rho0*(Cr*alpha*b-alpha-1)*d^2+((3*Cr*alpha*b-2*alpha-2)*rho0+2*sigma*b*Cr-2*sigma)*d+2*b*(alpha*rho0+sigma))^2

true

And C happens to be zero, which simplifies things.

B := simplify(coeff(q, t, 1)); C := simplify(coeff(q, t, 0))

0

So this is t*(A*t+B). Writing A=alpha and B = beta

solve({t*(alpha*t+beta) > 0, alpha >= 0}, t, parametric)

piecewise(And(alpha = 0, 0 < beta), [[0 < t]], And(alpha = 0, beta < 0), [[t < 0]], And(0 < alpha, beta = 0), [[t <> 0]], And(0 < alpha, 0 < beta), [[0 < t], [t < -beta/alpha]], And(0 < alpha, beta < 0), [[t < 0], [-beta/alpha < t]], [])

``

Download Q_solve2.mw

Older:

Q_solve.mw

restart

with(PDEtools)

_local(gamma)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

declare(V(xi))

V(xi)*`will now be displayed as`*V

Eq 3.3 doi: 10.3934/math.2024424

Fode := k*theta^2*V(xi)-rho*V(xi)+a[1]*V(xi)^2-b[1]*rho*(diff(diff(V(xi), xi), xi))+V(xi)

k*theta^2*V(xi)-rho*V(xi)+a[1]*V(xi)^2-b[1]*rho*(diff(diff(V(xi), xi), xi))+V(xi)

Eq 3.16

S := V(xi) = sum((alpha[i]+beta[i]*(diff(G(xi), xi))^i)/G(xi)^i, i = 0 .. 2)

V(xi) = alpha[0]+beta[0]+(alpha[1]+beta[1]*(diff(G(xi), xi)))/G(xi)+(alpha[2]+beta[2]*(diff(G(xi), xi))^2)/G(xi)^2

Eq. 2.8

Aode := (diff(G(xi), xi))^2 = (G(xi)^2-sigma)*ln(A)^2

(diff(G(xi), xi))^2 = (G(xi)^2-sigma)*ln(A)^2

Eq. 2.9, n=2,3,4

Aode2 := (diff(Aode, xi))/(2*(diff(G(xi), xi))); Aode3 := diff(Aode2, xi); diff(Aode3, xi); Aode4 := lhs(%) = eval(rhs(%), Aode2)

diff(diff(G(xi), xi), xi) = G(xi)*ln(A)^2

diff(diff(diff(G(xi), xi), xi), xi) = (diff(G(xi), xi))*ln(A)^2

diff(diff(diff(diff(G(xi), xi), xi), xi), xi) = (diff(diff(G(xi), xi), xi))*ln(A)^2

diff(diff(diff(diff(G(xi), xi), xi), xi), xi) = G(xi)*ln(A)^4

Eq 2.10

solution := G(xi) = kappa*ln(A)*A^xi+sigma/(4*kappa*ln(A)*A^xi)

G(xi) = kappa*ln(A)*A^xi+(1/4)*sigma/(kappa*ln(A)*A^xi)

odetest(solution, Aode)

0

E1 := eval(Fode, S); indets(E1)

{k, rho, theta, xi, a[1], alpha[0], alpha[1], alpha[2], b[1], beta[0], beta[1], beta[2], G(xi), diff(G(xi), xi), diff(diff(G(xi), xi), xi), diff(diff(diff(G(xi), xi), xi), xi)}

E2 := dsubs(Aode3, E1); indets(E2)

{A, k, rho, theta, xi, a[1], alpha[0], alpha[1], alpha[2], b[1], beta[0], beta[1], beta[2], G(xi), diff(G(xi), xi), diff(diff(G(xi), xi), xi), ln(A)}

E3 := dsubs(Aode2, E2); indets(E3)

{A, k, rho, theta, xi, a[1], alpha[0], alpha[1], alpha[2], b[1], beta[0], beta[1], beta[2], G(xi), diff(G(xi), xi), ln(A)}

We haven't used Aode yet, so we don't have any sigmas

E4 := dsubs(Aode, E3); indets(E4)

E5 := dsubs(diff(G(xi), xi) = dG, E4); indets(%)

{A, dG, k, rho, sigma, theta, xi, a[1], alpha[0], alpha[1], alpha[2], b[1], beta[0], beta[1], beta[2], G(xi), ln(A)}

Doesn't seem to be a polynomial in dG/G^2 as claimed:

C := collect(E5, {dG, G(xi)}, distributed)

(-6*rho*b[1]*beta[2]+a[1]*beta[2]^2)*dG^4/G(xi)^4+(-2*rho*b[1]*beta[1]+2*a[1]*beta[1]*beta[2])*dG^3/G(xi)^3+(2*ln(A)^2*rho*b[1]*beta[1]+k*theta^2*beta[1]+2*a[1]*alpha[0]*beta[1]+2*a[1]*beta[0]*beta[1]-rho*beta[1]+beta[1])*dG/G(xi)+k*theta^2*alpha[0]+k*theta^2*beta[0]+2*a[1]*alpha[0]*beta[0]+ln(A)^2*a[1]*beta[1]^2-ln(A)^2*rho*beta[2]+2*ln(A)^2*a[1]*alpha[0]*beta[2]+2*ln(A)^2*a[1]*beta[0]*beta[2]+alpha[0]+beta[0]+6*ln(A)^4*rho*b[1]*beta[2]+ln(A)^2*k*theta^2*beta[2]+a[1]*alpha[0]^2+a[1]*beta[0]^2-rho*alpha[0]-rho*beta[0]+ln(A)^2*beta[2]+(-ln(A)^2*rho*alpha[1]*b[1]+2*ln(A)^2*a[1]*alpha[1]*beta[2]+k*theta^2*alpha[1]+2*a[1]*alpha[0]*alpha[1]+2*a[1]*alpha[1]*beta[0]-rho*alpha[1]+alpha[1])/G(xi)+(-8*ln(A)^4*rho*sigma*b[1]*beta[2]-ln(A)^2*k*sigma*theta^2*beta[2]-2*ln(A)^2*sigma*a[1]*alpha[0]*beta[2]-2*ln(A)^2*sigma*a[1]*beta[0]*beta[2]-ln(A)^2*sigma*a[1]*beta[1]^2+ln(A)^2*rho*sigma*beta[2]-4*ln(A)^2*rho*alpha[2]*b[1]+2*ln(A)^2*a[1]*alpha[2]*beta[2]-ln(A)^2*sigma*beta[2]+k*theta^2*alpha[2]+2*a[1]*alpha[0]*alpha[2]+a[1]*alpha[1]^2+2*a[1]*alpha[2]*beta[0]-rho*alpha[2]+alpha[2])/G(xi)^2+(2*ln(A)^2*rho*sigma*alpha[1]*b[1]-2*ln(A)^2*sigma*a[1]*alpha[1]*beta[2]+2*a[1]*alpha[1]*alpha[2])/G(xi)^3+(6*ln(A)^2*rho*sigma*alpha[2]*b[1]-2*ln(A)^2*sigma*a[1]*alpha[2]*beta[2]+a[1]*alpha[2]^2)/G(xi)^4+2*a[1]*alpha[2]*beta[1]*dG/G(xi)^3+2*a[1]*alpha[1]*beta[1]*dG/G(xi)^2

We get 10, not 8 equations this way.

eqs := {coeffs(C, {dG, G(xi)}, 'monomials')}; nops(%)

{2*a[1]*alpha[1]*beta[1], 2*a[1]*alpha[2]*beta[1], 2*ln(A)^2*rho*sigma*alpha[1]*b[1]-2*ln(A)^2*sigma*a[1]*alpha[1]*beta[2]+2*a[1]*alpha[1]*alpha[2], 6*ln(A)^2*rho*sigma*alpha[2]*b[1]-2*ln(A)^2*sigma*a[1]*alpha[2]*beta[2]+a[1]*alpha[2]^2, 2*ln(A)^2*rho*b[1]*beta[1]+k*theta^2*beta[1]+2*a[1]*alpha[0]*beta[1]+2*a[1]*beta[0]*beta[1]-rho*beta[1]+beta[1], -ln(A)^2*rho*alpha[1]*b[1]+2*ln(A)^2*a[1]*alpha[1]*beta[2]+k*theta^2*alpha[1]+2*a[1]*alpha[0]*alpha[1]+2*a[1]*alpha[1]*beta[0]-rho*alpha[1]+alpha[1], -8*ln(A)^4*rho*sigma*b[1]*beta[2]-ln(A)^2*k*sigma*theta^2*beta[2]-2*ln(A)^2*sigma*a[1]*alpha[0]*beta[2]-2*ln(A)^2*sigma*a[1]*beta[0]*beta[2]-ln(A)^2*sigma*a[1]*beta[1]^2+ln(A)^2*rho*sigma*beta[2]-4*ln(A)^2*rho*alpha[2]*b[1]+2*ln(A)^2*a[1]*alpha[2]*beta[2]-ln(A)^2*sigma*beta[2]+k*theta^2*alpha[2]+2*a[1]*alpha[0]*alpha[2]+a[1]*alpha[1]^2+2*a[1]*alpha[2]*beta[0]-rho*alpha[2]+alpha[2], 6*ln(A)^4*rho*b[1]*beta[2]+ln(A)^2*k*theta^2*beta[2]+2*ln(A)^2*a[1]*alpha[0]*beta[2]+2*ln(A)^2*a[1]*beta[0]*beta[2]+ln(A)^2*a[1]*beta[1]^2-ln(A)^2*rho*beta[2]+k*theta^2*alpha[0]+k*theta^2*beta[0]+ln(A)^2*beta[2]+a[1]*alpha[0]^2+2*a[1]*alpha[0]*beta[0]+a[1]*beta[0]^2-rho*alpha[0]-rho*beta[0]+alpha[0]+beta[0], -6*rho*b[1]*beta[2]+a[1]*beta[2]^2, -2*rho*b[1]*beta[1]+2*a[1]*beta[1]*beta[2]}

10

ans := sort([solve(eqs, {rho, alpha[0], alpha[1], alpha[2], beta[0], beta[1], beta[2]})])

[{rho = rho, alpha[0] = -beta[0], alpha[1] = 0, alpha[2] = 0, beta[0] = beta[0], beta[1] = 0, beta[2] = 0}, {rho = (k*theta^2+1)/(4*ln(A)^2*b[1]+1), alpha[0] = -beta[0], alpha[1] = 0, alpha[2] = -6*ln(A)^2*(k*theta^2+1)*sigma*b[1]/((4*ln(A)^2*b[1]+1)*a[1]), beta[0] = beta[0], beta[1] = 0, beta[2] = 0}, {rho = (k*theta^2+1)/(4*ln(A)^2*b[1]+1), alpha[0] = -(6*k*theta^2*ln(A)^2*b[1]+4*ln(A)^2*a[1]*b[1]*beta[0]+6*ln(A)^2*b[1]+a[1]*beta[0])/((4*ln(A)^2*b[1]+1)*a[1]), alpha[1] = 0, alpha[2] = 0, beta[0] = beta[0], beta[1] = 0, beta[2] = 6*(k*theta^2+1)*b[1]/((4*ln(A)^2*b[1]+1)*a[1])}, {rho = -(k*theta^2+1)/(4*ln(A)^2*b[1]-1), alpha[0] = (2*k*theta^2*ln(A)^2*b[1]-4*ln(A)^2*a[1]*b[1]*beta[0]+2*ln(A)^2*b[1]+a[1]*beta[0])/((4*ln(A)^2*b[1]-1)*a[1]), alpha[1] = 0, alpha[2] = 0, beta[0] = beta[0], beta[1] = 0, beta[2] = -6*(k*theta^2+1)*b[1]/((4*ln(A)^2*b[1]-1)*a[1])}, {rho = -(k*theta^2+1)/(4*ln(A)^2*b[1]-1), alpha[0] = -(4*k*theta^2*ln(A)^2*b[1]+4*ln(A)^2*a[1]*b[1]*beta[0]+4*ln(A)^2*b[1]-a[1]*beta[0])/((4*ln(A)^2*b[1]-1)*a[1]), alpha[1] = 0, alpha[2] = 6*ln(A)^2*(k*theta^2+1)*sigma*b[1]/((4*ln(A)^2*b[1]-1)*a[1]), beta[0] = beta[0], beta[1] = 0, beta[2] = 0}, {rho = (1/6)*a[1]*beta[2]/b[1], alpha[0] = -(1/6)*(6*ln(A)^2*a[1]*b[1]*beta[2]+6*k*theta^2*b[1]+6*a[1]*beta[0]*b[1]-a[1]*beta[2]+6*b[1])/(a[1]*b[1]), alpha[1] = 0, alpha[2] = ln(A)^2*sigma*beta[2], beta[0] = beta[0], beta[1] = 0, beta[2] = beta[2]}, {rho = (1/6)*a[1]*beta[2]/b[1], alpha[0] = -ln(A)^2*beta[2]-beta[0], alpha[1] = 0, alpha[2] = ln(A)^2*sigma*beta[2], beta[0] = beta[0], beta[1] = 0, beta[2] = beta[2]}, {rho = k*theta^2+a[1]*alpha[0]+a[1]*beta[0]+1, alpha[0] = alpha[0], alpha[1] = 0, alpha[2] = 0, beta[0] = beta[0], beta[1] = 0, beta[2] = 0}]

In Eq 3.18 rho is the same. But beta[2] is on the rhs on theirs, but beta[0] here. The denominators are the same. But overall is not the same

ans[3]

{rho = (k*theta^2+1)/(4*ln(A)^2*b[1]+1), alpha[0] = -(6*k*theta^2*ln(A)^2*b[1]+4*ln(A)^2*a[1]*b[1]*beta[0]+6*ln(A)^2*b[1]+a[1]*beta[0])/((4*ln(A)^2*b[1]+1)*a[1]), alpha[1] = 0, alpha[2] = 0, beta[0] = beta[0], beta[1] = 0, beta[2] = 6*(k*theta^2+1)*b[1]/((4*ln(A)^2*b[1]+1)*a[1])}

Eq 3.19. Despite the differences, we get the correct final result.

eval(S, ans[3]); dsubs(Aode, %); sol := simplify(eval(%, solution))

V(xi) = -(6*k*theta^2*ln(A)^2*b[1]+4*ln(A)^2*a[1]*b[1]*beta[0]+6*ln(A)^2*b[1]+a[1]*beta[0])/((4*ln(A)^2*b[1]+1)*a[1])+beta[0]+6*(k*theta^2+1)*b[1]*(diff(G(xi), xi))^2/((4*ln(A)^2*b[1]+1)*a[1]*G(xi)^2)

V(xi) = -6*ln(A)^2*(k*theta^2+1)*sigma*b[1]/((4*ln(A)^2*b[1]+1)*a[1]*G(xi)^2)

V(xi) = -96*ln(A)^4*(k*theta^2+1)*sigma*b[1]*kappa^2*A^(2*xi)/((4*ln(A)^2*b[1]+1)*a[1]*(4*kappa^2*ln(A)^2*A^(2*xi)+sigma)^2)

odetest(sol, eval(Fode, ans[3]))

0

NULL

Download f-p-second.mw

I don't know about (24) - perhaps the paper has a typo in the ode (missing m?).

For (25) and (26), I corrected typos in magenta and the tests are verified.

I don't know about (30) or (31).

There seem to be typos in (40) and (41) but that doesn't solve the problems.

ode-17.mw

You didn't provide explanation about the Weierstraa cases (what is f3?). Maple has the WeierstrassP and WeierstrassPPrime.

The <> constructors are useful here:

ga_zero := <IdentityMatrix(2), ZeroMatrix(2); ZeroMatrix(2), -IdentityMatrix(2) >;

or

ga_zero := <<IdentityMatrix(2) | ZeroMatrix(2)>, <ZeroMatrix(2) | -IdentityMatrix(2)>>;

 

This method only works since your envelope is always increasing in size. Then you can use the running minimum and maximum values as your envelope.

numsolve-1229.mw

What are we allowed to know here? I don't think you could find dio1 from dio without knowing the form we are seeking. If we do know that form, then we can find the missing numbers using solve as follows:

restart

dio1 := ((x-1)*(y-2)*(z-3))^2+((x-4)*(y-5)*(z-6))^2+((x-7)*(y-8)*(z-9))^2

(x-1)^2*(y-2)^2*(z-3)^2+(x-4)^2*(y-5)^2*(z-6)^2+(x-7)^2*(y-8)^2*(z-9)^2

dio := expand(dio1)

3*x^2*y^2*z^2-36*x^2*y^2*z-30*x^2*y*z^2-24*x*y^2*z^2+126*x^2*y^2+432*x^2*y*z+93*x^2*z^2+360*x*y^2*z+312*x*y*z^2+66*y^2*z^2-1692*x^2*y-1476*x^2*z-1440*x*y^2-5040*x*y*z-1104*x*z^2-1080*y^2*z-948*y*z^2+6120*x^2+21096*x*y+18576*x*z+4554*y^2+16056*y*z+3540*z^2-79848*x-69300*y-61272*z+268452

Suppose we are allowed to know that we want an expression of the following form

dioguess := ((x-a)*(y-b)*(z-c))^2+((x-d)*(y-e)*(z-f))^2+((x-g)*(y-h)*(z-i))^2

(x-a)^2*(y-b)^2*(z-c)^2+(x-d)^2*(y-e)^2*(z-f)^2+(x-g)^2*(y-h)^2*(z-i)^2

Then we require the following to be zero

q := collect(dioguess-dio, {x, y, z}, distributed)

-268452+(a^2+d^2+g^2-66)*y^2*z^2+(-2*a^2*c-2*d^2*f-2*g^2*i+1080)*y^2*z+(-2*a^2*b-2*d^2*e-2*g^2*h+948)*y*z^2+(4*a^2*b*c+4*d^2*e*f+4*g^2*h*i-16056)*y*z+d^2*e^2*f^2+g^2*h^2*i^2+a^2*b^2*c^2+(-2*a*c^2-2*d*f^2-2*g*i^2+1440)*x*y^2+(4*a*b*c^2+4*d*e*f^2+4*g*h*i^2-21096)*x*y+(-2*a*b^2-2*d*e^2-2*g*h^2+1104)*x*z^2+(4*a*b^2*c+4*d*e^2*f+4*g*h^2*i-18576)*x*z+(a^2*b^2+d^2*e^2+g^2*h^2-3540)*z^2+(-2*a^2*b^2*c-2*d^2*e^2*f-2*g^2*h^2*i+61272)*z+(-2*a*b^2*c^2-2*d*e^2*f^2-2*g*h^2*i^2+79848)*x+(a^2*c^2+d^2*f^2+g^2*i^2-4554)*y^2+(-2*a^2*b*c^2-2*d^2*e*f^2-2*g^2*h*i^2+69300)*y+(b^2*c^2+e^2*f^2+h^2*i^2-6120)*x^2+(c^2+f^2+i^2-126)*x^2*y^2+(-2*b*c^2-2*e*f^2-2*h*i^2+1692)*x^2*y+(b^2+e^2+h^2-93)*x^2*z^2+(-2*b^2*c-2*e^2*f-2*h^2*i+1476)*x^2*z+(-2*d-2*g-2*a+24)*x*y^2*z^2+(4*a*c+4*d*f+4*g*i-360)*x*y^2*z+(4*a*b+4*d*e+4*g*h-312)*x*y*z^2+(-8*a*b*c-8*d*e*f-8*g*h*i+5040)*x*y*z+(-2*f-2*i-2*c+36)*x^2*y^2*z+(-2*e-2*h-2*b+30)*x^2*y*z^2+(4*b*c+4*e*f+4*h*i-432)*x^2*y*z

So we want the coefficients of each term to be zero. There are 26 coefficients

eqs := {coeffs(q, {x, y, z})}; nops(%)

{-2*d-2*g-2*a+24, -2*e-2*h-2*b+30, -2*f-2*i-2*c+36, a^2+d^2+g^2-66, b^2+e^2+h^2-93, c^2+f^2+i^2-126, 4*a*b+4*d*e+4*g*h-312, -2*a*b^2-2*d*e^2-2*g*h^2+1104, -2*a^2*b-2*d^2*e-2*g^2*h+948, a^2*b^2+d^2*e^2+g^2*h^2-3540, 4*a*c+4*d*f+4*g*i-360, -2*a*c^2-2*d*f^2-2*g*i^2+1440, -2*a^2*c-2*d^2*f-2*g^2*i+1080, a^2*c^2+d^2*f^2+g^2*i^2-4554, 4*b*c+4*e*f+4*h*i-432, -2*b*c^2-2*e*f^2-2*h*i^2+1692, -2*b^2*c-2*e^2*f-2*h^2*i+1476, b^2*c^2+e^2*f^2+h^2*i^2-6120, -8*a*b*c-8*d*e*f-8*g*h*i+5040, 4*a*b*c^2+4*d*e*f^2+4*g*h*i^2-21096, 4*a*b^2*c+4*d*e^2*f+4*g*h^2*i-18576, 4*a^2*b*c+4*d^2*e*f+4*g^2*h*i-16056, -2*a*b^2*c^2-2*d*e^2*f^2-2*g*h^2*i^2+79848, -2*a^2*b*c^2-2*d^2*e*f^2-2*g^2*h*i^2+69300, -2*a^2*b^2*c-2*d^2*e^2*f-2*g^2*h^2*i+61272, a^2*b^2*c^2+d^2*e^2*f^2+g^2*h^2*i^2-268452}

26

Solve these equations for the unknowns {a,b,c...i}. Of course there are multiple solutions corresponding to permutations of the three terms in dioguess

sols := solve(eqs, {a, b, c, d, e, f, g, h, i})

{a = 1, b = 2, c = 3, d = 7, e = 8, f = 9, g = 4, h = 5, i = 6}, {a = 4, b = 5, c = 6, d = 7, e = 8, f = 9, g = 1, h = 2, i = 3}, {a = 1, b = 2, c = 3, d = 4, e = 5, f = 6, g = 7, h = 8, i = 9}, {a = 7, b = 8, c = 9, d = 4, e = 5, f = 6, g = 1, h = 2, i = 3}, {a = 4, b = 5, c = 6, d = 1, e = 2, f = 3, g = 7, h = 8, i = 9}, {a = 7, b = 8, c = 9, d = 1, e = 2, f = 3, g = 4, h = 5, i = 6}

eval(dioguess, sols[1])

(x-1)^2*(y-2)^2*(z-3)^2+(x-4)^2*(y-5)^2*(z-6)^2+(x-7)^2*(y-8)^2*(z-9)^2

NULL

Download dio.mw

No, I don't think you can get EllipticE(x,-1) from that integral. I think MMA is wrong, and the AI probably got the wrong result from MMA.

Edit - see below - MMA and Maple have different definitions.

Download EllipticE.mw

1 2 3 4 5 6 7 Last Page 1 of 86